16th Pisa Meeting on Advanced Detectors

PERFORMANCE AND TEST OF THE NEW CMS ECAL BARREL FRONT-END ELECTRONICS FOR HL-LHC

26 May – 1 June 2024, La Biodola – Isola d'Elba (Italy)

HL-LHC challenges for the CMS ECAL Barrel

- Increased pile-up: from 40-60 in LHC Run 3 up to 200 at HL-LHC
- Detector ageing effects:
 - Crystal **transparency loss**
 - Increased noise due to APD leakage current

A new faster front-end electronics

In the **new Readout Unit** — that covers a 5x5 crystal matrix — the geometry, the crystals and the APDs will be unchanged

New electronics cards

- **VFE:** very-front-end card, with 5 readout channels each
- **FE**: front-end card that serializes data from 25 channels

- Will **improve time resolution** for better primary vertex reconstruction
 - Target: <30 ps for E>50 GeV
 - Higher sampling rate: 40 -> 160 MS/s
 - Faster analog shaping: ~100 -> ~20 ns
- Will enable the discrimination of scintillation **signals from APD spikes** – signals from direct ionisation of the APDs – using pulse shapes

Highlights from beam tests @H4/CERN SPS

Spike discrimination With the new electronics, a clear difference in the pulse shape between signals and spikes, which have different rising times, can be seen

• LVR: low voltage regulator card

New back-end card

The **BCP** (Barrel Calorimeter Processor) will take care of readout and trigger operations

Two new ASICs

CATIA: Calorimeter Trans-Impedance Amplifier

- TMSC 130 nm
- Two gain stages x1 and x10 • Range of G10: 200 GeV

LiTE-DTU: Lisbon Turin ECAL Data Transmission Unit

- TMSC 65 nm
- Two 12-bit 160 MS/s SAR ADCs
- Gain selection mechanism

-20-10 0 10 20 30 40 50 60 70 Time (ns)

CMS ECAL *Preliminary* Beam Test 2023, H4/SPS Equivalent energy at HL-LHC start (GeV) 120 105 $\frac{\mathsf{N}\sigma_n}{\mathsf{A}_{\mathsf{eff}}}\oplus\mathsf{C}$ (sd) 90

Energy resolution

Compatible with current electronics: <1% for electrons and photons above 50 GeV

• Range of G1: 2 TeV

- Loss-less data compression with simplified Huffman encoding
- 1.28 Gbps serializer unit
- PLL (Phase-Locked Loop) circuit from CERN lpGBT design

Improved performance in the production version of the LiTE-DTU

- PLL power connection improved • PLL auto-lock feature implemented **Changes from** v2.0 to v3.0 • Separate resets for PLL and digital logic
 - Other minor improvements and bug fix

Time resolution

- Compatible with the target of 30 ps above 50 GeV
- The measure is done targeting with the beam a

region between two crystals (in two different readout units, read by two <u>different back-end boards</u>) and computing the difference in time between the two

PLL vcoCapSelect code nr.

The PLL performance improved, and the auto-lock feature showed to be able to select an optimal value in order to minimise the jitter; the **phase relation with the** input clock is constant after multiple reconfigurations

freq [MHz]

The **Effective Number of Bits** (ENOB) increased in v3.0. This is the result of a **lower jitter**, achieved by improving the PLL power connection, and thanks to the auto-lock feature

Cecilia Borca (a) on behalf of the CMS Collaboration

University and INFN Torino, CERN (a)

