## **Development of the electron detectors and readout electronics** for BRAND experiment PAUL SCHERRER INSTITUT

G. Gupta<sup>1</sup>, S. Bhalerao<sup>1</sup>, K. Bodek<sup>1</sup>, L. De Keukeleere<sup>2</sup>, P. Hegde<sup>1</sup>, K. Łojek<sup>1</sup>,

Z. Przygodzka<sup>1</sup>, D. Ries<sup>5</sup>, D. Rozpędzik<sup>1</sup>, N. Severijns<sup>2</sup>, T. Soldner<sup>3</sup>, A.R. Young<sup>4</sup>, J. Zejma<sup>1</sup>

<sup>1</sup>M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland <sup>2</sup>Institute of Nuclear and Radiation Physics, KU Leuven, Belgium <sup>3</sup>Institut Laue-Langevin, Grenoble, France <sup>4</sup>Department of Physics and Astronomy, North Carolina State University, Raleigh, USA <sup>5</sup>Paul Scherrer Institute, Villigen, Switzerland



**KU LEUVEN** 

**NC STATE** 

JIVERSI



## **Electron Detection System**

## **Conceptual BRAND Experimental Setup (Cross Section)**

### **Observable quantities:**

Incoming electron momentum

(electron track + energy deposition in scintillator)

FOR SOCIET

## Scattered electron momentum

Recoil proton momentum

put significant limit on scalar and tensor couplings

#### Neutron polarization vector

(proton hit position + time of flight (TOF)) (electron track + energy deposition in scintillator)

# **Electron Detector & Readout Electronics**

#### The EJ200 Scintillator (1 meter long)



- The R&D for the scintillator (100 cm x 10 cm x 1 cm) for the ultimate version of BRAND is ongoing, aiming to use it as the detector for direct and Mott scattered electrons.
- The scintillator is coupled to two Hamamatsu PMTs (R1828-01) through a light guide adapter.
- To enhance light collection, the light guide adapter and three faces of the scintillator are wrapped with a 98% reflective film (3M ESR). The front face is wrapped with reflective mylar (6 μm).



 $^{241}$ Am (E<sub>v</sub> = 60 keV)

PMT A



- BRAND will employ energy and information to achieve time kinematics reconstruction.
- Traditionally, Analog-to-Digital Converter (ADC) and Time-to-Digital Converter (TDC) modules are required to measure the energy timing of corresponding and channels.
- However, if the charge integration information is encoded as time width, the use of ADC modules becomes unnecessary.

40 cm

TDC2 Vs TDC

40 cm

**TDC2 Vs TDC1** 

#### Charge to time converter preamplifier scheme for the plastic scintillator



- The charge-to-time conversion-based preamplifier is a powerful solution for measuring both the timing and the energy deposited in the detector.
- Considering the situation and cost-effectiveness, the ideal choice for the Data Acquisition (DAQ) system is a multihit TDC (CAEN VX1190) with a resolution of 100 ps.



## $X = X_{SM} + X_{EM} + c_{\text{Re }S} \operatorname{Re} S + c_{\text{Re }T} \operatorname{Re} T + c_{\text{Im }S} \operatorname{Im} S + c_{\text{Im }T} \operatorname{Im} T$

□ Measurement of correlation coefficients *H*, *L*, *N*, *R*, *S*, *U* and *V* with 5 x 10<sup>-4</sup> accuracy will

- relevant data points. • The parameter "S" represents the sigma spread factor.
- Parametrization-assisted event selection cuts, the background noise, primarily consisting of Compton electrons induced by gamma radiation from radioactive sources, is significantly reduced.



- The measured response using <sup>241</sup>Am (60 keV gamma) and <sup>207</sup>Bi (1 MeV conversion electron) demonstrates an almost uniform distribution, with a deviation of approximately 2% along the z-axis within a range of  $\pm 40$  cm.
- However, along the y-axis, the deviation in response is around 2% for the 60 keV gamma rays and approximately 6% for the 1 MeV conversion electrons.
- Consequently, it is crucial to perform gain mapping throughout the experiment to account for these variations and ensure accurate measurements.

## Summary

- $\checkmark$  The scan show significantly uniform response, over scintillator.
- $\checkmark$  The performance of the electron detectors will be validated using the radioactive source <sup>207</sup>Bi with suppressed gamma counts by coincidence with signals from MWDC.
- $\checkmark$  The charge-to-time converter-based electronics is excellent for this application and significant reduction of the cost.

## Acknowledgment

We acknowledge support of the Polish National Science Centre for the BRAND project under the grant agreements:UMO-2021/42/E/ST2/00267

## References

[1] J. Jackson et al., Phys. Rev., 106, 517 (1957) [2] K. Bodek et al., EPJ Web of Conferences, 262, 01014 (2022) [3] D. Rozpędzik et al., Pos PANIC2021, 432 (2022)

\*ghnashyam.gupta@doctoral.uj.edu.pl

10.0 cm

3400

3200

3000

2800 2600

2200

БM

PMT B