Advancements in Experimental Techniques for Measuring Dipole Moments of Short-Lived Particles at the LHC

Nicola Neri Università degli Studi and INFN Milano - CERN on behalf the proto-collaboration

16th Pisa Meeting on Advanced Detectors La Biodola - Isola d'Elba, 27 May 2024

Outline

- Physics goals
- Experimental technique
- Proposed experiment
- Detector developments
- Summary

First direct measurements of Λ_c^+ , Ξ_c^+ magnetic (MDM, μ) and electric (EDM, δ) dipole moments. No measurements to date

Physics goals

In the quark model $\Lambda_c^+ = [ud]c$, $\Xi_c^+ = [us]c$ and naive MDM $\mu_{\Lambda_c^+} = \mu_c$, $\mu_{\Xi_c^+} = \mu_c$. HQFT predictions require an experimental result at least at 10% precision as anchor point

Search of charm EDM, as probe for physics beyond the SM

.27 GeV/d

INFN

3

Experimental technique

- Charm baryon lifetimes is very short $\tau \approx 2 4 \times 10^{-13}$ s. Challenge: induce spin precession before decay
- Charm baryons from fixed-target *p*W collisions at LHC, $\sqrt{s} \approx 110 \text{ GeV}$
- Exploit channeling in bent crystals at LHC: high boost $\gamma \approx 500$, flight length $\beta \gamma c \tau \approx 3 6$ cm, high electric field $E \approx 1$ GV/cm between atomic planes, effective magnetic field $B \approx 500$ T

MDM μ and EDM δ precession in a bent crystal

PRD 103, 072003 (2021)

Spin-polarisation analyser

$$\frac{dN}{d\Omega'} \propto 1 + \alpha s' \cdot \hat{k}$$
$$\Phi \approx \frac{g - 2}{2} \gamma \theta_C$$

$$s'_x \approx s_0 \frac{d}{g-2} [\cos(\Phi) - 1]$$

Λ_c^+ signal event topology

PV

• Average momentum of 1.8 TeV for channeled Λ_c^+ baryons for bending angle $\theta_C = 7 \text{ mrad}$

 Λ_c^+

 θ_C

SV

p

Momentum distribution of Λ_c^+ daughters Si 7mrad

p...*****

 $\Lambda_c^+ \to p K^- \pi^+$

Double-crystal setup: From Pascal Hermes (CERN-BE) slides TWOCRYST proof-of-principle test at LHC Crystal based EDM/MDM measurement

* dedicated experiment solution shown here

- Operational scenario is transparent to high intensity proton operations
- Solid PoP to validate relevant aspects for such an experiment: TWOCRYST
- Lol in preparation for the LHCC review

IR3 Double Crystal Test Stand Proposal | LHC Machine Committee (LMC #467)

TWOCRYST proof-of-principle test at LHC

Bent crystal testbeam

Bent crystals produced at INFN Ferrara. Test at SPS H8 with INFN Milano
 Bicocca/Insubria telescope and 180 GeV/c positive hadron beam (Aug 2023)

Acknowledgments: D. De Salvador

Silicon strip sensors T (C) with 50µm (242µm) pitch

Goniometer with 1µm accuracy for precision crystal alignment

Bent crystal testbeam

Acknowledgments: A. Mazzolari

cry1: Si, 50 µrad, 4 mm, chan. eff. 60%

cry2: Si, 7 mrad, 70 mm, chan. eff. 16%

Proposed experiment at LHC

 Two alternatives: i) dedicated experiment at IR3 (baseline); ii) use LHCb detector at IP8 (fallback option)

	Pro	Cons	4000	R2 IR5	(CMS)	
IR3	Optimal experiment and detector. PID information	More resources needed. New detector, services (long cables, cooling)	2000 (III), 0	IR4 (RF)	IR6 (beam extraction) IR7 (betatron	
LHCb	Use existing tracking detector and infrastructure. Experimental area	No PID for p>100 GeV. Potential interference with LHCb core program	-2000	IR2 (ALICE, injection B1) IR1 (A 4000 –2000	IR8 (LHCb, injection B2) ATLAS) 0 2000 4000 (m)	
PoP test Construction, installation Commissioning, data taking						
	Run3	LS3		Run4		

10

LHC IR3: space identified for the experiment

Region for TWOCRYST PoP also suitable for the experiment <u>video</u>

- Spectrometer: pixel detectors in 4 Roman Pot stations (440 cm length)
- ▶ RICH: Helium radiator gas with SiPM photosensor array (500 cm length)

	pitch (μ m)	hit rate (MHz/cm ²)	fluence (n_{eq}/cm^2)	area (cm ²)	tech. solution
Upstream	55	250	$3.5 imes10^{15}$	10	Si pixel
Downstream	100	30	$9.0 imes10^{13}$	30	Si pixel/strip

Specification for the tracking detectors positioned upstream and downstream of the dipole magnet. Hit rate estimated with full simulations

Spectrometer in very forward region

- VELO pixel sensors housed in Roman Pots. Acceptance $\eta > 5$
- ▶ 4 tracking stations: 2 upstream + 2 downstream of the magnet
- Corrector dipole magnet MCBWV (1.1 T, 1.7m) available in situ

Spectrometer performance (full simulations)

- Good resolutions for signal $\Lambda_c^+ \to p K^- \pi^+$ decays
- Acceptance for Λ_c^+ signal decays 70% (with modifications to current RP and beam pipe geometry)

- Signal acceptance up to 90% and factor 2 improvement in momentum resolution with magnet B=4 T, L=1 m
 - Potential future upgrade: compact magnet in 20K HTS technology

Pixel sensor module for TWOCRYST

Based on LHCb VELO pixel sensors and VeloPix ASIC

Acknowledgements: J. Buytaert, V. Coco, E. Lemos from LHCb VELO group

Pixel detector assembly for TWOCRYST

- CMS-Totem based design for detector package in the Roman Pot
- ► Cooling system: 45 W, sensor temperature ~20 °C

Vacuum feed-through board and data flex

 New design to accommodate control and data lines inside the Roman Pot. Currently in production

Roman Pot station for TWOCRYST

ATLAS-ALFA Roman Pot extracted from the LHC tunnel is available.
 Pot rectangular section: 128×60×46 mm³ (width × height × thickness)

Detector housing

ATLAS-ALFA Roman Pot station

CMS-TOTEM top part and new closing flange

Particle identification with RICH up to 1 TeV

18 Photon impact points Photodetector area 60µm pixel 32.59 mm 16 28 channe 14 12 (apton flex-pct 10 Helium Entrance window Vessel wall 0.250 mm [cm]

SiPM area 100 cm², $0.5 \times 0.5 \text{ mm}^2$ pixel. mm-scale SiPM pixelisation is a key goal of new DRD4 collaboration

* dedicated experiment

Angular resolution: $\sigma_{\theta} = 42 \ \mu rad$ per photon (chromatic error 32 $\ \mu rad$, emission point error 6 $\ \mu rad$, pixel error 30 $\ \mu rad$)

Patter recognition: relatively easy thanks to 38k channels, low occupancy 0.1% from signal tracks

- Upper limit for 3σ K-π (p-π) separation is
 610 GeV/c (1.2 TeV/c)
- Achieve 90% signal retention and 90% bkg rejection comparing $\Lambda_c^+ \to p K^- \pi^+$ (signal) to $D^+ \to K^- \pi^+ \pi^+$, $D_s^+ \to K^+ K^- \pi^+$ (bkg)

Particle identification with RICH

* dedicated experiment solution shown here

Physics reach

- First measurements of charm baryon dipole moments in 2 years data taking assuming 10^6 p/s on 2 cm W target with Λ_c^+ (Ξ_c^+) polarisation 0.22 (0.20) and use 3-body and 4-body decays
- Sensitivity on MDM $2 \cdot 10^{-2} \mu_N$ and EDM $3 \cdot 10^{-16} e$ cm with $1.4 \cdot 10^{13}$ PoT
- Exploration of τ g-2 and EDM (improvements are required)
- Additional physics topics: charm hadron cross-section measurements and J/ψ photo production in the very forward region at pseudorapidity $\eta > 5$

INFN

16th Pisa Meeting on Advanced Detectors, 27 May 2024

Technology

INFN

- Machine: beam manipulation using bent crystals
 - bent crystals: silicon (Si) with mechanical bending as baseline. Germanium (Ge) and/or anodic bonding as bending technique for potential upgrade
 - deflection of beam halo towards W target
 - goniometers for precision bent crystal positioning
- **Detector**: compact with high granularity, covers very forward region ($\eta \geq 5$)
 - LHCb VELO silicon pixel sensors inside Roman Pots (from ATLAS-ALFA)
 - RICH detector for p, K, π PID up to 1 TeV energies. SiPM pixelisation below 1 mm

Magnet: compact spectrometer dipole magnet

- warm dipole magnet already available in situ (1.9 T m) as baseline
- Compact dipole magnet with higher field (4.0 T m) in 20K HTS technology for potential future upgrade

Proponents of ALADDIN LOI (being finalised)

K. Akiba⁵, F. Alessio¹, M. Benettoni¹², R. Cardinale⁹, S. Cesare¹⁰, M. Citterio¹⁰, S. Coelli¹⁰,
E. Dell'Occo⁶, A. S. Fomin³, R. Forty¹, J. Fu⁸, P. Gandini¹⁰, M. A. Giorgi¹³, J. Grabowski⁷,
S. J. Jaimes Elles², A. Yu. Korchin⁴, E. Kou³, S. Libralon², G. Lamanna¹³, C. Maccani^{1,12},
D. Marangotto¹⁰, F. Martinez Vidal², J. Mazorra de Cos², A. Merli¹⁰, H. Miao⁸, N. Neri^{1,10},
S. Neubert⁷, A. Petrolini⁹, J. Pinzino¹³, M. Prest¹¹, P. Robbe³, L. Rossi¹⁰, J. Ruiz Vidal², I.
Sanderswood², A. Sergi⁹, G. Simi¹², M. Sorbi¹⁰, M. S. Sozzi¹³, E. Spadaro Norella⁹, A.
Stocchi³, G. Tonani^{2,10}, N. Turini¹⁴, E. Vallazza¹¹, S. Vico Gil², M. Wang¹⁰, Z. Wang¹⁰, T.
Xing¹⁰, M. Zanetti¹², F. Zangari¹⁰, Y. Zheng⁸

¹CERN, ²IFIC Univ. of Valencia - CSIC, ³IJCLab, ⁴NSC KIPT, Karkhiv, ⁵NIKHEF, ⁶Tech. Univ. Dortmund, ⁷Univ. of Bonn, ⁸UCAS, ⁹UniGe & INFN Genova, ¹⁰UniMi & INFN Milano, ¹¹Uninsubria & INFN Milano Bicocca, ¹²UniPd & INFN Padova, ¹³UniPi & INFN Pisa, ¹⁴UniSi & INFN Pisa

With support of PBC and TWOCRYST collaborators for the machine PoP

Series of topical workshops: <u>1st</u>, <u>2nd</u>, <u>3rd workshop</u>

INFN

Nicola Neri

Special thanks to M. Ferro-Luzzi, S. Redaelli for long-standing support, far beyond their role of PBC-FT conveners

23

16th Pisa Meeting on Advanced Detectors, 27 May 2024

Summary

- New experimental techniques for the measurement of Λ_c^+, Ξ_c^+ baryons dipole moments have been developed
- TWOCRYST proof-of-principle test at LHC is foreseen in 2025 to demonstrate the feasibility of a future experiment
- ALADDIN, a dedicated fixed-target experiment at LHC IR3, is designed and features a spectrometer and a RICH detector. Aims to start data taking in Run4
- Lol for ALADDIN (An LHC Apparatus for Direct Dipole Moment INvestigation) experiment in preparation. Protocollaboration being finalised

References for charm baryons

- 1. V. G. Baryshevsky, The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals, Phys. Lett. B757 (2016) 426.
- 2. L. Burmistrov, G. Calderini, Yu Ivanov, L. Massacrier, P. Robbe, W. Scandale, A. Stocchi, *Measurement of short living baryon magnetic moment using bent crystals at SPS and LHC*, CERN-SPSC-2016-030 ; SPSC-EOI-012.
- 3. F. J. Botella, L. M. Garcia Martin, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, A. Oyanguren, J. Ruiz Vidal, *On the search for the electric dipole moment of strange and charm baryons at LHC*, Eur. Phys. J. C 77 (2017) 181.
- 4. L. Henry, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, P. Robbe, J. Ruiz Vidal, CERN- LHCb-INT-2017-011, *Proposal to* search for baryon EDMs with bent crystals at LHCb.
- 5. V. G. Baryshevsky, On the search for the electric dipole moment of strange and charm baryons at LHC and parity violating (P) and time reversal (T) invariance violating spin rotation and dichroism in crystal, arXiv:1708.09799 (2017).
- A.S. Fomin, A.Yu. Korchin, A. Stocchi, O.A. Bezshyyko, L. Burmistrov, S.P. Fomin, I.V. Kirillin, L. Massacrier, A. Natochii, P. Robbe, W. Scandale, N.F. Shul'ga, *Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals*, JHEP 08 (2017) 120.
- E. Bagli, L. Bandiera, G. Cavoto, V. Guidi, L. Henry, D. Marangotto, F. Martinez Vidal, A. Mazzolari, A. Merli, N. Neri, J. Ruiz Vidal, *Electromagnetic dipole moments of charged baryons with bent crystals at the LHC*, Eur. Phys. J. C 77 (2017) 828.
- 8. A. S. Fomin, S. Barsuk, A. Yu. Korchin, V.A. Kovalchuk, E. Kou, A. Natochii, E. Niel, P. Robbe, A. Stocchi, *The prospects of charm quark magnetic moment determination*, Eur. Phys. J. C **80**, 358(2020).
- S. Aiola, L. Bandiera, G. Cavoto, F. De Benedetti, J. Fu, V. Guidi, L. Henry, D. Marangotto, F. Martinez Vidal, V. Mascagna, J. Mazorra de Cos, A. Mazzolari, A. Merli, N. Neri, M. Prest, M. Romagnoni, J. Ruiz Vidal, M. Soldani, A. Sytov, V. Tikhomirov, E. Vallazza, *Progress towards the first measurement of charm baryon dipole moments*, PRD 103, 072003 (2021).

References for τ lepton and machine

- A.S. Fomin, A. Korchin, A. Stocchi, S. Barsuk, P. Robbe, *Feasibility of τ lepton electromagnetic dipole moments measurements using bent crystals at LHC*, JHEP 03 (2019) 156.
- J. Fu, M. A. Giorgi, L. Henry, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, J. Ruiz Vidal, *Novel method for the direct measurement of the τ lepton dipole moments*, Phys. Rev. Lett. 123, 011801 (2019)
- 12. D. Mirarchi, A. Fomin, S. Redaelli, W. Scandale, *Layouts for fixed-target experiments and dipole moment measurements of short-lived baryons using bent crystals at the LHC*, Eur. Phys. J C 80 (2020) 10, 929

Magnetic dipole moment of charm quark

Spin 1/2 particle magnetic dipole moment (MDM) $\mu = \frac{g}{2} \frac{eQ}{2m}$, where g is the gyromagnetic factor. g = 2 for e, μ, τ (point-like), $g_p = 5.6$ for proton (substructure)

MDM of charm baryons
$$\mu_{\Lambda_c^+} = \frac{g_{\Lambda_c^+}}{2} \frac{e}{2m_{\Lambda_c^+}}$$
 and $\mu_{\Xi_c^+} = \frac{g_{\Xi_c^-}}{2} \frac{e}{2m_{\Xi_c^+}}$

• In the quark model:
$$\Lambda_c^+ = [ud]c$$
, $\mu_{\Lambda_c^+} = \mu_c$, $\Xi_c^+ = [us]c$, $\mu_{\Xi_c^+} = \mu_c$
and $g_{\Lambda_c^+(\Xi_c^+)} = \frac{Q_c m_{\Lambda_c^+(\Xi_c^+)}}{m_c} g_c \approx 0.9 g_c$

- Beyond the quark model, e.g. heavy quark effective theories, theoretical predictions $\mu_{\Lambda_c^+} = (0.34 0.43)\mu_N$, where μ_N is the nuclear magneton
- Determine μ_c , g_c of the charm quark from charm baryon MDM measurements. Confront experimental results with theory predictions

INFN

28

Theory predictions for charm baryon MDM

An experimental measurement at 10% precision would be useful to confront with theory predictions

Electric dipole moment of charm baryons

- Electric dipole moments (EDM, δ) of charm baryons are minuscule in the SM (3-loop level)
- Search for EDM as probe for physics beyond the SM

Indirect limits - from J. Ruiz Vidal slides

Bound	Ref.	Measurement	Method		
$ d_c < 8.9 \times 10^{-17} \text{ ecm}$ [Escribano:1993xr]		$\Gamma(Z ightarrow c\overline{c})$	Measurement at the Z peak (LEP). Weights electic (d_c) and weak (d_c^w) dipole moments through model-dependent relations.		
$ d_c < 5 imes 10^{-17}$ ecm	[Blinov:2008mu]	$e^+e^- ightarrow c\overline{c}$	The total cross section (from the LEP combination [ALEPH:2006bhb]) is enhanced by the charm EDM vertex $c\overline{c}\gamma$.		
$ d_c < 3 imes 10^{-16}$ ecm	[Grozin:2009jq]	electron EDM	Considers contribution of d_c into d_e through light-by-light scattering (three-loop) diagrams.		
$ d_c < 1 imes 10^{-15}$ ecm	[Grozin:2009jq]	neutron EDM	Similar approach than Ref. [Sala:2013osa] with different treatment of diverging integrals and more conservative assumptions.		
$ d_c < 4.4 imes 10^{-17}$ ecm	[Sala:2013osa]	neutron EDM	Considers contribution of d_c into d_d via W^{\pm} loops. Expressions from Ref. [CorderoCid:2007uc].		
$ d_c < 3.4 imes 10^{-16}~e$ cm	[Sala:2013osa]	$BR(B \rightarrow X_s \gamma)$	Considers contributions of d_c into the Wilson coefficient C_7 .		
$ d_c < 1.5 imes 10^{-21}~e$ cm	[Gisbert:2019ftm]	neutron EDM	Renormalization group mixing of d_c into $ ilde{d}_c$.		
$ d_c < 6 imes 10^{-22}$ ecm	[Ema:2022pmo]	neutron EDM	Contribution of d_c to $3g$ - 1γ operators, to light-quark, to neutron EDM		
$ d_c < 1.3 imes 10^{-20}~e{ m cm}$	[Ema:2022pmo]	electron EDM	Contribution of d_c to 2γ - $2g$ operators, to electron-nucleon, to paramagnetic molecule ThO		

Charm baryons decays of interest

- List of Λ_c^+ , Ξ_c^+ modes and corresponding branching fractions \mathscr{B} , reconstructibility ϵ_{3trk} and effective branching fraction $\mathscr{B}_{eff} = \mathscr{B} \cdot \epsilon_{3trk}$
- Reconstructibility of Σ^+ , Σ^- , Ξ^- as charged stable particles throughout the detector taken into account in ϵ_{3trk}

Λ_c^+ final state	B (%)	ϵ_{3trk}	$\mathcal{B}_{\mathrm{eff}}$ (%)
$pK^{-}\pi^{+}$	6.28 ± 0.32	0.99	6.25
$\Sigma^+\pi^-\pi^+$	4.50 ± 0.25	0.54	2.43
$\Sigma^-\pi^+\pi^+$	1.87 ± 0.18	0.71	1.33
$p\pi^{-}\pi^{+}$	0.461 ± 0.028	1.00	0.46
$\Xi^- K^+ \pi^+$	0.62 ± 0.06	0.73	0.45
$\Sigma^+ K^- K^+$	0.35 ± 0.04	0.51	0.18
pK^-K^+	0.106 ± 0.006	0.98	0.11
$\Sigma^+\pi^-K^+$	0.21 ± 0.06	0.54	0.11
$pK^{-}\pi^{+}\pi^{0}$	4.46 ± 0.30	0.99	4.43
$\Sigma^+\pi^-\pi^+\pi^0$	3.20	0.54	1.72
$\Sigma^-\pi^+\pi^+\pi^0$	2.1 ± 0.4	0.71	1.49
$\Sigma^+[p\pi^0]\pi^-\pi^+$	2.32	0.46	1.06
$\Sigma^+[p\pi^0]K^-K^+$	0.18	0.46	0.08
$\Sigma^+[[p\pi^0]\pi^-K^+$	0.11	0.46	0.05
All		•••	20.2

Ξ_c^+ final state	$\mathcal{R}B$	B (%)	$\epsilon_{\rm 3trk}$	$\mathcal{B}_{\mathrm{eff}}$ (%)
$\Xi^-\pi^+\pi^+$	1	2.86 ± 1.27	0.64	1.84
$\Sigma^+ K^- \pi^+$	0.94 ± 0.10		0.42	1.14
$\Sigma^+\pi^-\pi^+$	0.48 ± 0.20		0.44	0.60
$pK^{-}\pi^{+}$	0.21 ± 0.04		0.99	0.60
$\Sigma^{-}\pi^{+}\pi^{+}$	0.18 ± 0.09		0.61	0.31
$\Sigma^+ K^- K^+$	0.15 ± 0.06		0.41	0.18
$\Omega^- K^+ \pi^+$	0.07 ± 0.04		0.42	0.08
$\Sigma^+[p\pi^0]K^-\pi^+$	0.48	•••	0.57	0.79
$\Sigma^+[p\pi^0]\pi^-\pi^+$	0.25		0.57	0.40
$\Sigma^+[p\pi^0]K^-K^+$	0.08		0.59	0.13
All				6.1

Polarisation of charm baryons

Indications from Λ baryon polarisation

Polarisation increases as a function of Feynman $x_F =$

- For crystal experiment expect large positive x_F
- Work in progress to produce similar plot for Λ_c^+ with pp collisions and SMOG data at LHCb

 p_L^*

 $\max p_L^*$

Preparatory measurements with LHCb data

• Use 400k $\Lambda_c^+ \rightarrow pK^-\pi^+$ signal events from semileptonic beauty hadron decays to determine the **amplitude model and** Λ_c^+ **polarisation**

• Large sensitivity to polarisation. $\Lambda_c^+ \to p K^- \pi^+$ best probe for polarisation measurements of Λ_c^+ produced in fixed-target collisions

Polarisation in *p*-Ne collisions with LHCb SMOG

- Λ_c^+ polarisation in *p*W at $\sqrt{s} \approx 110$ GeV is unknown. Measure Λ_c^+ polarisation in LHCb SMOG *p*-Ne collisions at $\sqrt{s} = 68.6$ GeV
- More than 10^{23} PoT: $3k \Lambda_c^+ + \overline{\Lambda}_c^-$ signal yield with $\Lambda_c^+ \to pK^-\pi^+$. Analysis is ongoing, expect 10% uncertainty on polarisation
- Large improvements in Run3 with SMOG2, x1000 increase in signal yield LHCb-PUB-2018-015

Spectrometer for a dedicated experiment at IR3

- Channeled Λ_c^+ in bent crystal are very focused in few cm²
- Preliminary simulations: with 8
 VELO tiles + existing 1.9Tm
 dipole magnet in situ can build
 a spectrometer

Hit distribution for $\Lambda_c^+ \to pK^-\pi^+$ Area \approx few cm². rate \approx 100 MHz/cm² Last tracker station at z=0.4 m from magnet

Vertex Locator

(inside beam pipe)

1 2 3 4

Dipole

magnet

Tracker

(inside beam pipe)

5 6 7 8

for Vertex and Tracker stations 1 cm from the beam 55x55 μ m² pixel, pixel hit rate 600 MHz/cm²,

LHC orbit correction dipole MCBW (1.7 m 1 1 T) is considered for the spectrometer

Tracker (outside beam pipe)

9 10 11 12

m, 1.1 T) is considered for the spectrometer (Credits: Pascal Hermes, CERN)

Hit rate and fluences on tracking layers

Minimum bias simulations are exploited to study the tracker detector occupancies. A flux of 10^6 proton/s is considered, where 7 TeV protons impinge on a 2 cm long W target.

Figure 14: Particle rates at first station (layer 0) upstream the magnet and first station (layer 4) down-stream the magnet.

Pixel sensors and front-end electronics

▶ VELO pixel tiles, GBTx and OPB

Acknowledgements: J. Buytaert, V. Coco, E. Lemos from LHCb VELO group

Fixed-target setup upstream of LHCb

 Goniometer for target+crystal positioned in the region upstream of the LHCb detector, close to the VELO

- Goniometer internal structure: compatible with operations in ultra-high vacuum
- Impedance studies ongoing

