

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

Performance of small-diameter Muon Drift Tube chambers with new fast readout ASIC at high background rates

Delta Pulse Response

- ATLAS phase II chip

New 65 nm chip

0.3_F

S. Abovyan¹, N. Bangaru¹, F. Fallavollita¹, O. Kortner¹, S. Kortner¹, H. Kroha¹, E.Voevodina¹, R. Richter¹, Y. Zhao¹, ¹ Max-Planck-Institute for Physics, Munich (Germany)

Frontier Detector for Frontier Physics - 16th Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, May 26-June 1, 2024

1. High background rates at Future Circular Hadron Collider (FCC-hh)

Small-diameter Muon Drift Tube chamber design for FCC-hh

FCC-hh Muon system will consist of 4 parts:

- $|\eta| < 1.0$: barrel;
- $1.0 \le |\eta| < 1.5$: outer endcap;
- $1.5 \le |\eta| < 2.2$: inner endcap;
- 2.2 $\leq |\eta| <$ 3.0: forward
- Muon System will have to provide a muon trigger.
- Deflection angle α measurement of muon p_{T}
- An angular resolution of 70 µrad is required for a high momentum resolution up to $p_{\tau} = 1$ TeV.

sMDT chambers with 2 x 4 layers of 15 mm diamater drift tubes at 1.5 m multilayer distance provide the required angular resolution.

The use of sMDT technology in the FCC-hh maintains high spatial resolution despite high background rates.

2. New small Drift Tube Detector (sMDT) Technology

96 sMDT chambers have already been constructed for the HL-LHC upgrade of the ATLAS Muon Spectrometer.

Properties	New sMDT
ube diameter, Wall thickness	15 mm, 400 μm
node wire diameter	50 um

5. New 65 nm ASD Chip

Four channels Amplifier/Shaper/Discriminator (ASD) fabricated in 65 nm TSMC CMOS technology developed by Max Planck Institute for Physics (Munich).

> Bipolar shaping selected to reduce effects of baseline shift at high signal rates.

> Output available as low voltage differential signal and digital CMOS level signal.

> Power consumption per channel 12.8 mW (61.2 % lower than for the current ATLAS ASD chip for HL-LHC phase II) and each channel occupies 0.235 mm² (43% of current ATLAS ASD chip area).

Note: The current ATLAS ASD chip was developed at the Max Planck Institute (Munich) for the HL-LHC Phase-II Upgrade of the ATLAS Muon Spectrometer.

6. sMDT Setup at CERN Gamma Irradiation Facility (GIF++)

The new ASD chips were tested on a sMDT chamber with 1.6 m long in CERN's Gamma Irradiation Facility (GIF++).

Setup description:

➤ One 65 nm ASD on

Advantages of the sMDT chambers:

- \checkmark High reliability and robustness.
- ✓ Cost-effective way solution for precise track point.
- \checkmark Angle measurement over large areas (~1200 m²).

	•
Number of tube layers	8
Operating Gas Mixture	Ar: CO ₂ (93:7)
Operating Pressure	3 bar
Operating HV working point	2730 V
Gas gain	$2 imes 10^4$
Max. Drift time	~ 175 <i>ns</i>
Single tube Space resolution at 500 Hz/cm ² background rate	<i>110<u>+</u>2 µт</i>

- \blacktriangleright High mechanical accuracy ($\sim 5 \mu m$ sense wire positioning accuracy).
- > Spatial resolution (< 40 μm) over large areas.
- 10 times high-rate capability.
- \succ No aging effect observed with Ar: **CO**₂ (93:7) drift gas at **3 bar** up to **9** *C*/*cm* charge accumulation on wire.

prototype board connected to four tubes.

> \succ Rest of the tubes equipped with ATLAS ASD for comparison.

➤ Coincidence of GIF++ scintillators used as trigger.

working

sMDT operating condition:

 \succ Gas mixture: *Ar*: *CO*₂ (93:7)

> Operating ATLAS ASD connected point: No ASD connected **2730 V** (G = 2 x 10⁴)

3. High Rate Performance of sMDT Chambers

> Development of space charge under irradiation \succ Gain drop \propto r³

- > Shielding of wire potential causes lower gas amplification at lower radii
- > Space charge fluctuations cause deterioration of spatial resolution at large radii
- > sMDT chambers have demonstrated the capability to operate at rates up to 30 kHz / cm²
- > Expected max. rates at HL-LHC in the BIS sector is 300 Hz / cm²
- \succ Expected max. rates in barrel and outer region of FCC-hh is 1.25 kHz / cm²

7. Spatial resolution and muon detection efficiency as a function of the γ background rate

- > Detection efficiency at zero background rates is 99%.
- Indicative of the dead time of the electronics

$$\epsilon = \epsilon_0 (1 - n \cdot t_{dead})$$

where n = counting rate

- > Translates to approximately 40 ns of electronic dead time.
- > More than three times lower than for the current ATLAS ASD chip.

4. Limitations of Readout Electronics

Effect of pile up under conditions of high rates due to bipolar shaping [4]

Current Readout Electronics

- ➤ Used in ATLAS
- > 130 nm CMOS technology
- \succ Peak time of 15 ns with bipolar shaping
- > Dead time of the electronics masks muon hits, reducing muon detection efficiency at high rates
- > Signal pile up effect of muon hit following a background hit

Improvements

- > New 65 nm CMOS technology
- > Faster baseline recovery of the bipolar shaping scheme to reduce pile up ➤ Meant to handle FCC expected rates

[1] M. Benedikt et al., FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. [2] O. Kortner et al., Design of the FCC-hh muon detector and trigger system, https://doi.org/10.1016/j.nima.2018.10.013 [3] H. Kroha et al., Design and construction of integrated small-diameter drift tube and thin-gap resistive plate chambers for the phase-1 upgrade of the ATLAS muon spectrometer, <u>https://doi.org/10.1016/j.nima.2018.10.139</u> [4] B. Bittner et al., "Performance of Drift-Tube Detectors at High Counting Rates for High-Luminosity LHC Upgrades", Nucl. Instrum. Methods Phys. Res., A 732 (2013), 250–254 [5] N. Bangaru Design and Testing of Gaseous Detectors and Their Readout Electronics for Particle Detection at High Counting Rates, (2024), Masters thesis, CERN-THESIS-2024-048, https://cds.cern.ch/record/2896934?In=en