

Search for Gravitational Waves using a Network of RF Cavities

Tim Schneemann^{1,*}, Kristof Schmieden¹, Matthias Schott^{1,2}

*tschneem@students.uni-mainz.de

¹Johannes Gutenberg-Universität Mainz ²Rheinische Friedrich-Wilhelms-Universität Bonn

Motivation

Sensitivity of existing cavity experiments

- Source: merger of inspiraling primordial black holes
- Expected sensitivities in GHz regime (SQMS, ADMX, etc.) several orders of magnitude away from theoretical models
- While detector development (Q-factor improvement, higher B-field, more volume) will
- help, a new approach to analysis might be necessary

(LISA) (LIGO/ Virgo)

currently in use searching for axions)

Cavity haloscopes

- Usually used to search for halo DM such as axions
- Mass peak of axions is enhanced by cavity resonance
- Conversion into photons by interacting with external B-field \rightarrow power access
- Could also be used to search for GW signatures of PBH mergers
- Many axion haloscope experiments recast axion limits into GW strain limits
 - Limitation on integration time often neglected (you can't use several minutes or even hours - of integrated data for signals which are fractions of sections long)
 - Recasts must consider signal coherence time when analysing integrated data in frequency realm (as is usual in axion searches)
- FIG. 4 Expected sensitivity of different experiments, considering the longest integration time dictated by the maximum integration time in the detector. For the GHz experiments ADMX and SQMS the dashed lines are $m_{PBH} = (10^{-9}, 10^{-10}, 10^{-11})$ 10^{-12})M_{\odot} and m_{PBH} = (10⁻¹⁰, 10⁻¹¹, 10⁻¹², 10⁻¹³)M_{\odot} respectively^[2]

The GravNet^[3] idea

	Axions	GW signal of PBH merger		
Nature & Orientation of excited cavity eigenmode	Dipole, always along axis of external B-field	Quadrupole, orientation along propagation of GW	Use a network of several cavities Assuming 10 setups scattered	- ^{C)} 10 ⁻¹⁵
Conversion into photons via	Primakoff effect	inverse Gertsenshtein effect	around the globe	10 ⁻¹⁹
Signal strength	$\sim Q_0 B_{ext}^2$	$\sim Q_0 B_{ext}^2$	→ combining phase aligned time-	10 ⁻²⁵
	Coherent signal at constant		Series data -> effective nower	10 ⁻²⁷

Transient signal, moves

through the frequency band

Signal integration

Conerent signal at constant frequency $f \sim m_a$ dependent on axion rest mass

FIG. 1 Rectangular Copper cavity, used for axion search^[1]

Existing Experimental Setup

shield

- Setup is in dual use while cool down and when cold: vector network analyzer (VNA) attached to track peak position and characterize setup Once characterized: real-time

increase by factor of 10 \rightarrow Straw sensitivity increase by a

factor $\sqrt{10}$ FIG. 2 Spherical Cavity, used for GW^{\prime} • Sensitivity $h_0 < 10^{-23}$ at 1s integration time with this setup

If signal is seen in (at least) 3 cavities the propagation direction of GW can be

reconstructed by time delay between the signals

Sensitivity improvement by single photon counter

- Even higher sensitivity possible by single photon counting
- Assuming background rate of 10 Hz (even lower rates have already been achieved this further improves the following estimates) and 20 detector setups
- Two possible setups:
 - a) magnet as in use right now B = 14 T & 9 cm diameterb) Research NMR magnet B = 9 T & 80 cm diameter

Setup	GravNet-a	GravNet-b
radius	40 mm	40 cm
length	$12 \mathrm{cm}$	$50~{ m cm}$
Volume $[m^3]$	6×10^{-4}	0.25
Q_0	10^{6}	10^{5}
$T_{ m sys}$ [K]	0.1	0.1

spectrum analyzer can take data in continuous readout (no power input, just thermal noise of the

cavity)

Most components commercial off

the shelf products

 Cool down + ramping of magnet to max. field ~ 3h each

FIG. 3 Setup in use for axion and dark photon search in Mainz, Germany

Sources

^[1] Tim Schneemann, Kristof Schmieden, Matthias Schott, arXiv:2308.08337 ^[2] Gabriele Franciolini, Anshuman Maharana, Francesco Muia; arXiv:2205.02153v1 ^[3] Kristof Schmieden, Matthias Schott; arXiv:2308.11497v1

