

16th Pisa meeting on advanced detectors – May 26 - June 1, 2024

Design and optimization of a MPGD-based

HCAL for a future experiment at Muon Collider

<u>A. Pellecchia¹, M. Buonsante^{1,2}, M. Borysova³, A. Colaleo^{1,2}, M. T. Camerlingo¹, L. Longo¹, M. Iodice⁵, M. Maggi¹, L. Moleri³,</u> R. Radogna^{1,2}, G. Sekhniaidze⁴, F. M. Simone^{1,2}, A. Stamerra^{1,2}, R. Venditti^{1,2}, P. Verwilligen¹, D. Zavazieva³, A. Zaza^{1,2}

¹ INFN Bari ² Università degli studi di Bari ³ Weizmann Institute of Science ⁴ INFN Napoli ⁵ INFN Roma 3

(2023

Calorimeter slice simulation

Digital calorimeter	Primary energy is proportional to total number of hits	
Semi-digital calorimeter	Hits are weighted based on three thresholds $E_{\pi} = \alpha N_1 + \beta N_2 + \gamma N_3$ $N_x = \text{number of hits overcoming x-th threshold}$	

Standalone Geant4 simulation for shower

MPGD-HCAL for a Muon Collider experiment

Muon Collider: powerful probe to investigate the Standard Model with unprecedented precision after HL-LHC

> **Beam-induced background (due to in-flight muon decay)** in hadron calorimeter:

- Mostly photons (96%) and neutrons (4%)
- Large **asynchronous** component

- containment calculation
- Geometry: 2 cm iron, 5 mm gas (Ar/CO₂)
- Cross section 1×1 m²
- Readout pad granularity 1×1 cm²

Longitudinal **containment** in 10 λ , transversal in 3 λ

Semi-digital energy resolution: down to 8% for a 80 GeV pion **Digital** calorimeter **saturates** at 14%

Development of an HCAL cell prototype

12 sampling layer prototypes produced and tested in **RD51 common project**:

7 μ -RWELL, 4 MicroMegas, 1 RPWELL \leftarrow Common readout for all three technologies

- Active area **20×20 cm²**, pad size **1×1 cm²**
- Drift gap 6 mm

MPGD performance at CERN SPS

Test beam at SPS (July 2023)

Goal: validating the readout detectors

Test beam setup at SPS

- **Efficiency** higher than 95% throughout all active area
- Space resolution smaller than pad size

MicroMegas (256 µm-strip) Tracking

Under test	12 MPGD prototypes	Detector	Uniformity (%)
Gas	Ar:CO₂:C₄H₁₀ 93:5:2 (MicroMegas, RPWELL) Ar:CO₂:CF₄ 45:15:40 (μ-RWELL)	MM-RM3	$(12.3 \pm 0.8)\%$
		MM-Na	$(11.6 \pm 0.8)\%$
		MM-Ba	$(8.0 \pm 0.5)\%$
Particle	80 GeV/c muons	RPWELL	$(22.6 \pm 4.7)\%$

calorimeter?

for a hadronic

Why MPGDs

Micro-pattern gaseous detectors as readout layers for a sampling HCAL

Cost effectiveness

SRS for the test

beam setup

- Several C/cm² radiation hardness
- Discharge rate not impeding operations
- O (MHz/cm²) rate capability
- O (100 µm) space resolution
- Few ns timing with MIPs

-MC

0.06

0.05

0.04

0.02 F

Comparable laboratory performance for all three technologies

HCAL cell performance at CERN PS

Test beam data to simulation comparison for 6 GeV pion

6 GeV π

 $< N_{hits} >_{data} = (87.00 \pm 0.48)$ hits

 $< N_{hits} >_{MC} = (82.39 \pm 1.24)$ hits

= (23.48 ± 0.97) hits

 $\sigma_{data} = (22.52 \pm 0.34)$ hits

with MIPs and comparing the three MPGD technologies

Good uniformity for MicroMegas; regions of non-uniformity observed on some μ -RWELLs \rightarrow under investigation in lab

antonello.pellecchia@cern.ch

Test beam at PS with calorimeter prototype (August-September 2023):

- Goal: **measuring** the energy resolution of a 1 λ calorimeter prototype with 1-10 GeV pions beam
- Compared with **G4 simulation** for the **small** prototype, including problematic electronics effects

Very good data/MC agreement