

I. Balossino^{A,B,C}, G. Bencivenni^c, G. Cibinetto^A, R. Farinelli^D, G. Felici^c, I. Garzia^A, M. Gatta^c, <u>M. Giovannetti^c</u>, S. Gramigna^A, L. Lavezzi^E, G. Mezzadri^{A,B}, G. Morello^c, E. Paoletti^c, G. Papalino^c, M. Poli Lener^c, M. Scodeggio^A

^A INFN-Ferrara, Italy

- ^B Institute of High Energy Physics, Beijing, PRC
- ^c INFN-LNF Laboratori Nazionali di Frascati, Italy
- ^D INFN Bologna, Italy
- ^E INFN Torino, Italy

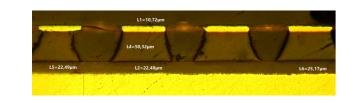
 $n + {}^{10}_{5}B$

Gas Box

Glass

Apical

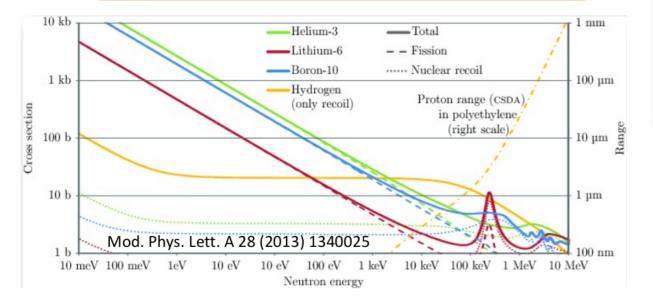
¹⁰B₄C/DLC


 $^{10}B_4C/DLC$

Apical

Glass

Gas Box



The goal of the **uRANIA-V** project is the development of **thermal neutron detectors** using ¹⁰B₄C converters and two gaseous detectors: the **µ-RWELL** and the **sRPC**.

Thermal neutron detection and converter material

- Probing heavy structure in motion
- Radioactive waste monitoring
- Radiaton Portal Monitor (homeland security)
- Neutron diffraction imaging

Thermal neutron detection relies on the neutron capture and thus conversion to ionizing particle: ³He shortage \rightarrow ¹⁰**B** alternative: ¹⁰**B**₄**C converter**.

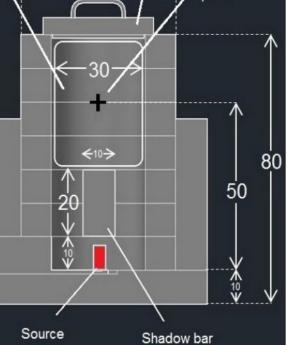
Advantages of ¹⁰B₄C

- Chemically stable
- Mechanically robust
- Good adherence on substrates
- Uniform sputtering thickness over large surfaces
- Deposition based on industrial technology

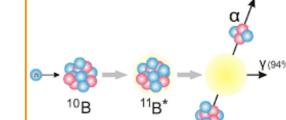
HOTNES – Homogeneous Thermal Neutron Source

olume

6%

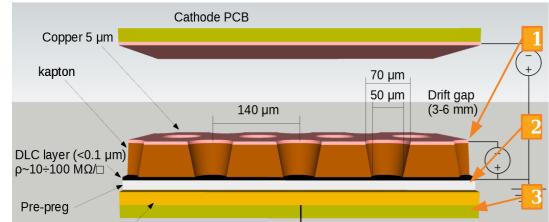

δ٧-

voltage electrode.


ENEA-Frascati facility ^[3]:

- ²⁴¹Am-B neutron source
- Isofluence disks: 758±16cm⁻²s⁻¹
- Shadow bar to stop gammas
- Energy peak @ 100meV

Reference


+HV

DLC

Insulator

The µ-RWELL – three converter geometries

The μ -RWELL is a single amplification stage resistive MPGD^[1]. The cathode surface, facing the gas gap, is **sputtered with** ¹⁰**B**₄**C** and is used as a **neutron converter.**

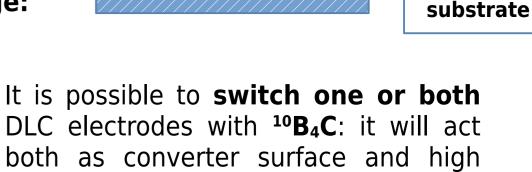
A WELL patterned kapton foil as amplification stage

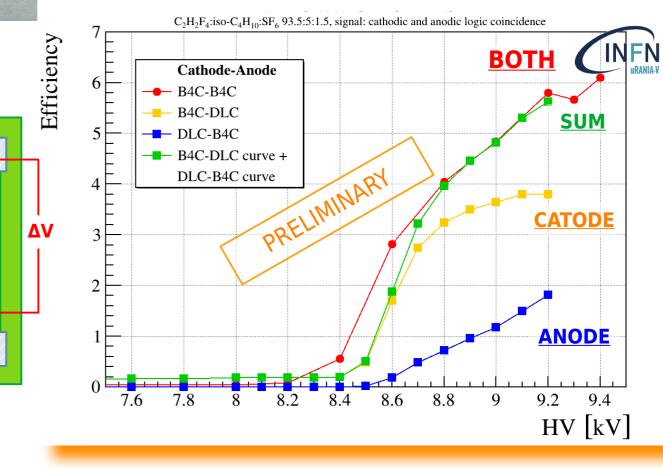
A resistive layer of DLC w/ ρ_s~80 MΩ/□

A standard readout PCB

The **sRPC**^[2] DLC electrodes are manufactured with sputtering -HV techniques on flexible supports. The technology allows to realize large electrodes with a DLC surface resistivity in a very wide range: **10 MΩ/** ÷ **10 GΩ**/

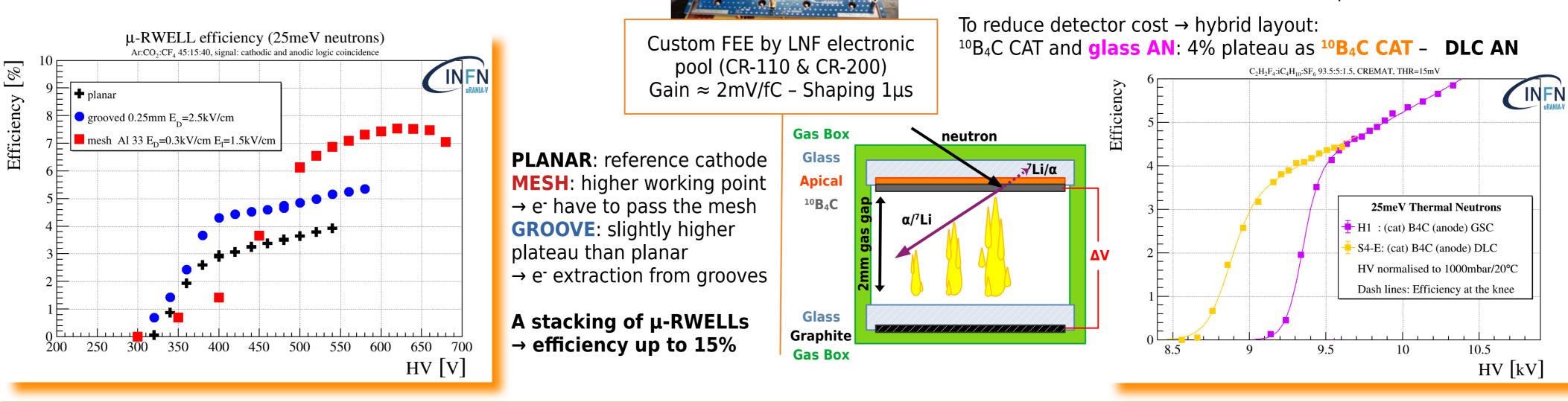
 ${}_{3}^{7}Li(1.02MeV) + \alpha(1.78MeV)$


 ${}^{7}_{3}Li(0.84MeV) + \alpha(1.47MeV) + \gamma(0.48MeV) 94\%$


neutron

α/⁷Li

, Li/α



δV+

 α /⁷Li **mean path** < **2mm** \Rightarrow CAT and AN have different behaviors • ¹⁰B₄C CAT – **DLC AN** : the expected 4% plateau was reached • **DLC CAT** – ¹⁰**B**₄**C AN** : efficiency depends on the HV • ${}^{10}B_4C CAT - {}^{10}B_4C AN$: the ${}^{10}B_4C - {}^{10}B_4C$ performs as the SUM

[1] G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, 2015 JINST 10 P02008 [2] M. Giovannetti et al., The surface Resistive Plate Counter (sRPC): an RPC based on MPGD technology, 2023 JINST 18 C06026 [3] A. Sperduti et al., Results of the first user program on the Homogeneous Thermal Neutron Source (ENEA/INFN), 2017 JINST 12 P12029

More on **u-RWELL**?

- \rightarrow G. Bencivenni's talk *The* μ -*RWELL for future HEP challenges*
- \rightarrow G. Morello's poster The μ -RWELL technology for tracking apparatus in HEP