

TCAD investigation of Compensated LGAD Sensors for extreme fluence

<u>A. Fondacci^{1,2}, T. Croci², D. Passeri^{3,2}, A. Morozzi², R. White⁴, C. Hanna^{5,4}, F. Siviero⁴, L. Menzio⁴, L. Lantieri^{5,4}, M. Ferrero⁴, R. Arcidiacono^{6,4}, N. Cartiglia⁴, M. Boscardin⁷, M. Centis Vignali⁷, G. Paternoster⁷, V. Sola^{5,4}, F. Moscatelli^{1,2}</u>

- (1) Istituto Officina dei Materiali (IOM) CNR, Perugia, Italy
- (2) Istituto Nazionale di Fisica Nucleare (INFN), Perugia, Italy
- (3) Dipartimento di Ingegneria, Università di Perugia, Perugia, Italy
- (4) Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy
- (5) Dipartimento di Fisica, Università di Torino, Torino, Italy
- (6) Università del Piemonte Orientale, Novara, Italy
- (7) Fondazione Bruno Kessler, Povo, Trento, Italy

Compensated LGADs

Ultra-fast timing is the **cornerstone** of the detectors in **future HEP experiments**.

Thin LGADs can achieve time resolutions of $20 \div 30 \ ps$, but only up to a fluence of $2.5 \cdot 10^{15} \ n_{eq}/cm^2$ due to the acceptor removal.

Their radiation resistance must be boosted to make them ideal candidates for **future experiments** characterised by extreme fluences ($\simeq 10^{17} n_{eq}/cm^2$)

 \Rightarrow Compensated LGADs !!!

In **Compensated LGADs**, the **gain layer** results from the **difference** between **overlapping acceptor and donor doping**.

Both implants will undergo radiation removal, but if properly engineered, their difference will be kept constant, ensuring an operating life well beyond $10^{17} n_{eq}/cm^2$.

Two unknowns (*Donor removal coefficient* & *Interplay between donor and acceptor removal*) were **analysed** using Synopsys[©] Sentaurus **TCAD** tools.

TCAD Simulations: Methods and Results

<u>Goal</u>: Extract the donor removal coefficient (c_D) by comparing TCAD simulations and measurements of irradiated compensated LGADs.

Procedure:

- 1. Tuning of substrate active thickness and doping concentration by C-V measurement-simulation comparison of **non-irradiated PIN diodes**;
- 2. Compensated gain layer profiles extracted from SIMS are inserted and fine-tuned to match the C-V measurements of **non-irradiated Compensated LGADs**;
- 3. The Phosphorus peak concentration is varied to match C-V measurements of **irradiated Compensated LGADs** at various fluences, trying to reproduce the gain-layer depletion properly.

Exploiting the experimental acceptor removal coefficient $c_{A_{W12}} = 2.50 \cdot 10^{-16} cm^2$, agreement with C-V measurements for W12 was achieved using a donor removal coefficient $c_D = 6.50 \cdot 10^{-16} cm^2$. With the latter and $c_{A_{W13}} = 8.26 \cdot 10^{-17} cm^2$, the C-V simulations-measurements accordance is good for W13 as well.

Conclusions & Next Steps

- The c_D extracted from the C-V measurements and simulations comparison suggests that donor removal is faster than acceptor removal;
- The presence of Phosphorus seems not to change the acceptor removal mechanism and the beneficial effect of Carbon co-implantation compared to those observed in standard LGADs;
- The c_D extracted from W12 (3-2 compensation strategy) simulations, will also be tested for the other compensations strategies (2-1 and 5-4, see the Split Table).

References & Funding

An in-depth introduction to Compensated LGADs is available in

• V. Sola et al., NIM. A In Press (2024) 169453.

For an extended description of the radiation damage modelling, please refer to

- A. Morozzi et al., PoS Vertex2019 (2020) 050;
- M. Ferrero et al., CRC Press (2021).

This project has received funding from:

- European Union's Horizon 2020 Research and Innovation Programme under Grant Agreements Nos 101004761 (AIDAinnova) and 101057511 (EURO-LABS);
- PRIN MIUR project 2022RK39RF 'Comon- Sens';
- ERC COG CompleX, Grant Agreement No 101124288.

fondacci@iom.cnr.it