

Resistive High granUlarity Micromegas for Future Detectors

Frontier Detectors for Frontier Physics 16th Pisa Meeting on Advanced Detectors La Biodola • Isola d'Elba • Italy

26 May - 1 June, 2024

M. lodice* on behalf of the RHUM group:

M. Alviggi^{1,2}, M. Biglietti³, M. T. Camerlingo⁵, K. Chmiel^{3,4}, M. Della Pietra^{1,2}, C. Di Donato^{1,6}, R. Di Nardo^{3,4}, P. Iengo², M. Iodice³, R. Orlandini^{3,4}, S. Perna^{1,2}, F. Petrucci^{3,4}, G. Sekhniaidze², M. Sessa⁷

¹INFN Napoli, ²Universita di Napoli "Federico II", ³INFN Roma Tre⁴Università di Roma Tre, ⁵INFN Bari, ⁶Universita` di Napoli "Parthenope", ⁷INFN Roma 2

GOALS

- Consolidation of resistive Micromegas, for measurements at rates of the order of 10 MHz/cm²
- High-granularity low occupancy readout on pads of the order of mm², capable of withstanding high radiation.
- Demonstration of the scalability of detectors on large surfaces
- High efficiency (close to 100%). Spatial resolution (depending on the application) of the order of 100 μm
- Robustness, stability of operation at high gains, working point with large margin before breakdown and instabilities onsets

Medium-Size Double DLC layer Micromegas

Double DLC layer Micromegas Concept

Readout pads are covered by a **double layer of** DLC with a grid of staggered interconnecting vias for rapid charge evacuation. (Concept from: G. Bencivenni, et al., JINST 12 (2017) 06, C06027) Typical (optimal) DLC resistivity: 20 – 40 MΩ/sq

All small size Micromegas presented here consist of a similar anode plane, segmented in 48 x16 readout pads.

PAD SIZE: 1 x 3 mm²

Gain and Rate Capability

s copper anode X-Ray gun. $Ar:CO_2:iC_4H_{10} (93:5:2)$ $Ar:CO_2:iC_4H_{10} (93:5:2)$ Ar

Rate capability Vs X-rays from the

Gain drops at 10 MHz/cm² are limited to 10% at $G_0 = 6000$, and to 20% and 30% at gains of 10k and 20k, respectively.

Test-Beam Results: Efficiency and Spatial Resolution for the Medium-Size Detector

Efficiency for perpendicular tracks is nearly 100% except at pillar positions.

Spatial resolutions measured for perpendicular tracks (from residuals clusters vs track) Optimised resolution: ~65 μ m with charge weighted centroid using p = 0.65

Medium/Low-rate Version – Capacitive Sharing

Reduction of the Readout Channels Exploiting the Capacitive Sharing Technique

APV Slave

Towards Large Area: 50 x 40 cm²

Double DLC layer Resistive Layout

50x40 cm² construction completed Fine granularity in the centre 1 cm² pads elsewhere

Many thanks for all aspects of our R&D to: Rui De Oliveira, B. Mehl, O. Pizzirusso, and all the MPT CERN Workshop

BigOne SPATIAL RESOLUTION

1.5 esiduals [mm

2.5 mm 5 mm 10 mm

> Pad size of "top-layer" (signal induction): 2.5x2.5 mm2

(K. Gnanvo et al., Nucl. Instrum. Meth.

A 1047 (2023) 167782)

- Side-L: three layers capacitive sharing:
 2.5x2.5 mm² → 5x5 mm² → 10x10 mm²
- Side-S: two layers capacitive sharing: pad-size: 2.5x2.5 mm² → 5x5 mm²

APV Side-L Side-S APV Side-L Side-S APV Mater APV Side-L Side-S

Capacitive sharing Ar:CO₂:IC₄H₁₀ (93:5:2) → Padx 5 x 5 mm² → Pady 5 x 5 mm² → A factor 1/30 of the pad size (~200 μm with 5x5 cm² pads)

(*) M. lodice INFN Roma Tre (Italy) mauro.iodice@roma3.infn.it