

Production of the DarkSide-20k photo-detectors G. Rogers

University of Birmingham

On behalf of the DarkSide-20k collaboration

16th Pisa Meeting on Advanced Detectors

30/05/2024

DARKSIDE

Evidence for Dark Matter

- Dark matter observed from its gravitational influence, including
 - Rotational curves
 - Gravitational lensing
 - CMBR
- The nature of dark matter is still unknown
- The WIMP is a promising dark matter candidate

DARKSIDE

The Global Argon Dark Matter Collaboration

MiniCLEAN: SNOLAB

- Combined expertise from four LAr experiments
- Over 400 collaborators from over 100 institutions worldwide

Immediate goal: DarkSide-20k

DarkSide-50: LNGS

DarkSide-20k

Dual-phase Argon TPC

S1: Prompt scintillation

S2: Ionization (position reconstruction)

Why argon?

- Easy to purify
- Transparent to own scintillation
- Scalable
- High ionization, good scintillator
- Strong ER discrimination via pulse shape

30/05/2024

Dual-phase Argon TPC

Dual-phase Argon TPC

Background Mitigation

Goal: To be instrumentally background-free over 200 t-yr exposure

Primary sources of background

- Electron Recoils
- Nuclear Recoils

Material Selection & Assay

- Strict material selection
- Extensive material assay campaign
- Assay facilities at institutions worldwide

Underground Argon

- ³⁹Ar is a radioactive isotope found in AAr
- UAr extracted from CO₂ well in Colorado
- Purified in dedicated distillation column in Sardinia
- DArT in Canfranc measures ³⁹Ar depletion factor

³⁹Ar depletion factor: ~1400x

Indistinguishable from WIMP

Neutrons tagged by coincidence detection in TPC and veto

DARKSIDE

SPAD

- Semiconductor sensors based on p-n junction
- Reverse biased above breakdown
- Operated in Geiger mode

SiPM

- Designed in collaboration with Fondazione Bruno Kessler (FBK)
- ~94,900 SPAD's/SiPM
- Used in TPC and Veto
- Cryogenically stable
- Low voltage operation
- Low material budget
- Good single photon resolution

30/05/2024

Tile and veto Tile (vTile)

- 24 SiPMs mounted on Arlon 55N substrate with readout electronics on the backside
- TPC and veto have different electronics and SiPM summing scheme

vTile backside

TPC Tile backside

PDU and veto PDU (vPDU)

- 16 Tiles assembled onto Arlon 55N motherboard (MB)
- Provides signal and power to the tiles
- Summed into quadrants: 4 readout channels/PDU
- Low power consumption

• Low power consumption

Cryoprobe at NOA

Nuova Officina Assergi (NOA)

- ISO 6 clean room at LNGS
- SiPM wafer characterisation
- Location of TPC PDU production
- Rn monitoring: 6-10 Bq/m³

Characterising SiPMs at cryogenic temperature

• 2x4 needles for anode contact

Readout electronics population: University of Birmingham

assembled Assembled 1600 Tested Passed 400 B2 1200 Yield=97.2% Over 70% completed! Cumulative 1000 800 600 400 200 2024-04 2024-05 2024-01 2024-02 2024-03 2023-12 2023-11

Quality control criteria

- Visual inspection
- Nominal response to injected pulse
- Nominal power consumption

Date

SiPM die attach and wirebond: University of Liverpool and STFC interconnect

Quality control criteria

- Visual inspection of SiPM die
- Nominal quadrant capacitance and resistance
- Visual inspection of vTile

Single vTile testing – University of Oxford and STFC interconnect

vPDU assembly and warm test – University of Manchester and University of Warwick

vPDU cold test: University of Edinburgh, University of Lancaster, University of Liverpool & AstroCeNT

- Capacity for 33 vPDUs/cooldown between all sites
- Each quadrant of each vPDU is electrically characterised

Quality control criteria

- SNR > 5
- Distinct PE spectrum
- Nominal breakdown voltage ~ 55V

DARKSIDE

TPC PDU Production at NOA

- TPC Tile readout electronics assembled in an external company, tested at NOA
- SiPM mounting takes place at NOA
- Process very similar to vPDU production

G. Rogers | 16th Pisa Meeting on Advanced detectors 2024

PDU testing in Napoli

- ISO 6 cleanroom
- PDU characterisation at LN temperature
- Four-layer mechanical structure each layer holding 4 PDUs

Production Database

- Object tracking via QR codes or wafer position
- Central storage of all test results
- Track production progress
- Monitor quality assurance metrics

Ability to trace to original components

24

Physics Reach

 Total background events after all cuts: < 0.1 neutron WIMP like events in total exposure of 200 t·yr

 The present projection - based on a 10 yr run, giving a fiducial volume exposure of 200 t·yr is 6.3 x 10⁻⁴⁸ cm² for 90% C.L. exclusion and 2.1 x 10⁻⁴⁷ for 5σ discovery for 1 TeV/c² WIMP.

World leading sensitivity!

Exclusion 90% C.L. 10^{-46} 10-47 [cm²] σsı LZ, 90% CL excl. [2207.03764] 10-48 LZ 2.7 y (15.3 t-y) XENONnT 5 y (20.2 t-y) DS-20k Fid. 5 y (100 t-y) DS-20k Full 5 y (250 t-y) DS-20k Full 10 y (500 t-y) pMSSM11 [EPJ C 78 87 (2018)] V-floor for Ar [PRD 89 (2014) 2, 023524] 6003 (2023 of Conferences 280, 10-49 0.01 0.1 10 M_{γ} [TeV/c²]

Conclusions and outlook

- Production of DarkSide-20k is well underway
- DarkSide-20k utilises many state-of-the-art technologies:
 - Novel cryogenic large area SiPM arrays
 - Underground Ar
 - Gd-PMMA
- DarkSide-20k has innovated in production and testing methods for SiPM technologies
- DarkSide-20k is set to lead the search for WIMPs!

Backup Slides

Underground Argon

DArT (Radiopure assay)

- Located in the ArDM experiment at Canfranc lab
- Single-phase detector to measure ³⁹Ar depletion factor
 2020 JINST 15 P02024

DarkSide low mass and Argo

ARGO

- 3000 t-yr exposure
- 2030s +
- Focused on high mass dark matter

DarkSide-LowMass

- 1 t-yr exposure
- Low mass focus

Phys. Rev. D 107, 112006 (2023)

Quantity	Requirement
Breakdown Voltage	26.8 +/- 0.2V
SiPM response recharge time	300-600 ns
Single photoelectron (SPE) spectra	Distinct PE
Gain	Stable
Signal to noise	>8
Dark count rate (DCR)	< 0.01 Hz/mm ² (7Vov) <0.1 Hz/mm ² (9Vov)
Internal cross talk (CT) probability	< 33% (7Vov) < 50% (9Vov)
Afterpulsing (AP) probability	< 10%