Single Event Effect test results of the ULTRASAT sensors Vlad Berlea on behalf of the ULTRASAT collaboration (ISA, WIS, NASA, DESY) **DESY, Humboldt University**

The ULTRASAT mission

- First wide-field, time-domain survey^[1] of the dynamic near-ultraviolet sky.

- Key goals: counterparts to gravitational wave sources and Supernovae^[3].
- Launch to GEO orbit in late 2027 and 3-6 years of orbit operations ^[4].
- Tower Semiconductor process, 180 nm dual-gain 4T CMOS Imaging Sensor.
- **Camera**: 4 independent tiled sensors in two-butted configuration^[5].
- 9.5 µm pixel pitch, 4 µm **Epitaxial** active depth, operated at **200 K**.

- 45 x 45 mm² large active area, stitched, Back Side Illuminated sensors.

Figure 1: ULTRASAT satellite rendering^[2].

Figure 2: ULTRASAT camera rendering featuring 4 independent CMOS sensors.

Figure 3: ULTRASAT sensor stitching diagram: A,B,C,F,I- seal rings; D- Row Decoders; E-Pixel array; **G**- digital block; **H**- ADC

Figure 4: Set-up at the RADEF facility.

Single Event Effect testing

- 12 hours of heavy ion beam irradiation at Jyvaskyla RADEF facility^[6]. Linear Energy Transfer of ions: 13- 65 MeV cm²/mg.

- Irradiations performed in air on 2 DUTs. Several 25 µm thick Kapton tapes used for **enhancing** particles **LET's**.
- 2 x2 cm² square beam scanned over two "**Sectors**" of the ULTRASAT sensor.
- Upset and latchup's detected only in one sensor sector \rightarrow Most probable culprit, the **digital domain**.

Figure 5: Heavy ion beam cone LET curves used during the experiment.^[6]

Row decoders SECTOR 4 SECTOR 3 Not Tested Not Tested SECTOR 1 SECTOR 2 Latch up **NO** Latch up **Memory Upset**

Figure 7: SEU cross-section data for the ULTRASAT sensor.

Figure 8: 2D parameter space scan of the shape and scale fit parameters.

- Memory cell array of 768 x 9 bit latches (90.25 μ m² footprint).
- Maximum Likelihood Estimation fitting method
- $(\rightarrow 99 \% R^2)$ w/ 4-parameter Weibull function.

$$f(x) = \sigma_{\lim} (1 - e^{(-(x - LET_0)/l)^k})$$

Figure 9: SEL cross-section data for the ULTRASAT sensor.

Figure 10: SEL X-section fitted w/ a step function for low/high over-currents.

- On-chip micro controller, digital circuitry (10 mm²).
- The latch-up cross-section shows an exponential increase at large LET's.
- **Hypothesis**: 2 latch-ups: Over-currents > 250 mA (high current) and <250 mA (low current).
- Measurements at room temperature \rightarrow smaller Xsection expected at operational temp. (200 K)

Figure 6: The 4 sectors of the ULTRASAT sensor

References:

[1] https://www.weizmann.ac.il/ultrasat/ [2] https://www.iai.co.il/commercial [3] ULTRASAT: A wide-field time-domain UV space telescope – Y. Shvartzvald et al. [4] The scientific payload of the Ultraviolet Transient Astronomy Satellite (ULTRASAT) – Sagi Ben-Ami et al.

[5] Design of the ULTRASAT UV camera – A. Asif et al.

[6] https://www.jyu.fi/

HELMHOLTZ

during mission time:

 $R = \int \int \int f(L,\Theta,\Phi) \cdot S(Q_{\rm C} / L,\Theta,\Phi) \sin \Theta \, dL \, d\Theta \, d\Phi$

Rate prediction

- **Simulate** the in-orbit flux:
 - Solar particle flux (ESP-PSYCHIC H-U)
 - Trapped proton flux (AP-8 MIN)
 - Galactic Cosmic Ray flux (CREME96 Solar Minimum)
- **Fit** the cross-section data.
- **Extrapolate** data for all angles(Chordlength Model): dR = A * C(l)f(L)dLdl
- **Predict** conservative SEE rate estimates based on the data.

16th Pisa Meeting on Advanced Detectors

Figure 11: Integral particle flux

simulated at the GEO orbit.

Figure 12: Critical particle length (chordlength) distribution.

SEE	Predicted Rate [# of events/ 3 years mission]
SEU	2
Low Current SEL	8.09 E-4
High Current SEL	4.03 E-3

- Protection mechanism (SW and HW)
- Upcoming campaign extend the measured parameter space at high/lower LET's