

Design and Thermal Simulation of the Front-end Module for STARLIGHT

Han Wang¹, Peng Peng¹, Jie Zhang², Zhi Liu¹, Xudong Ju¹, Xining Jia¹, Wei Li¹, Peng Liu¹, Tao Sun³, Zhen Sheng³, Fang liu¹ 1 ShanghaiTech University, Shanghai China. 2 Institute of High Energy Physics, Chinese Academy of Science. 3 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science.

Email: wanghan98@ihep.ac.cn

PM 2024 - 16th Pisa Meeting on Advanced Detectors - Edition 2024 2024/05/26 - 2024/06/01 La Biodola - Isola d'Elba (Italy)

Introduction

Figure 1 Location of SHINE (Top View)

- SHINE (Shanghai High repetition rate **XFEL aNd Extreme light facility) is** the first hard-Xray Free Electron Laser facility in China.
- Photon Energy: 0.4~25 keV
- Pulse Duration: 20~50 fs (5~200 fs)

To make use of the excellent properties, a pixel detector system is being developed, named **STARLIGHT.** The Specifications of the detector is shown in table 1.

Figure 2 The STARLIGHT Detector System

• The front-end module is the core part of **STARLIGHT**, As shown in Figure 3,

Table 1 Specifications of the STARLIGHT Detector System

Specs	Parameters
Pixel Array	128 × 128
Energy range	5 - 25 keV
Pixel size	100 μm × 100 μm
Dynamic range	1 ~ 10000 photons/pulse @12 keV
Frame rate	10 kHz (continuous readout)
Quantum efficiency	90 % @ 7 keV
Cavity vacuum degree	10 ⁻⁶ mbar

- Repetition Frequency: 10 kHz (1 MHz)
- Peak Brightness: 10³² ~10³³ photons/µm²/rad²/s/0.1% BW

including sensor, readout chip, front end printed circuit board (PCB) and support heat dissipation structure.

Design of the Thermal emulator

 \bullet

• In STARLIGHT, each chip has a 128 × 128 pixel array with a single pixel power consumption of 50 μ W. The total power consumption of a chip is 0.82 W, with the LDO consuming 0.273W. The total heat flux is 5.443 mW/mm².

Table 2 The design parameters of 7	Thermal	emulator
------------------------------------	---------	----------

Para.	thickness	width	length
VDDA	0.5 oz	5 mil	16998 mil
VDDD	0.5 oz	5 mil	16998 mil

Figure 4 Distribution of simulated ASIC heat-producing copper wires

Temperature rise: 18.8187 °C 19.6059 - 17.2535 14.9012 Figure 7 Temperature distribution cloud map (Top view)

Figure 8 Temperature distribution cloud map (Front view)

- It predicts airflow, temperature and heat transfer in IC PCBs.
- The model is established, meshed, material properties and boundary conditions are set, and calculations are performed. The simulation results in Figure 6 show a temperature rise of 18.8187 °C.

Test Results and Summary

- The test results of the Thermal emulator are given in Table 3.
- Thermal imaging results of the front-end module are shown in

Figure 9 Thermal emulator test environment

Table 3 The Test Results of Thermal_emulator

	Design	Test
Voltage/V	1.4	1.393
ASIC power/W	0.82	0.900
LDO power/W	0.273	0.261

Figure 10, the temperature rise is 21.9 °C, which is close to the simulation.

-14 -12.8 15.9 (a) Top view (b) Lateral view

Figure 10 Thermal image of Thermal emulator front end module

Figure 11 Temperature distribution cloud map (Top view)

Figure 12 Temperature distribution cloud map (Front view)

At present, the FR-4 heat dissipation effect used in STARLIGHT's front-end module PCB is not very good, and HTCC (High-temperature co-fired ceramics) is intended to be used in the future, the thermal simulation results are shown in Figure 11. The temperature rise is 5.0889 °C.

國科學院為能物現漏完所 Institute of High Energy Physics Chinese Academy of Sciences

