

Performances of ATLAS Micromegas detectors in high background environment and after long term irradiation at the Gamma Irradiation Facility at CERN

Valerio D'Amico (Ludwig-Maximilians-Universität München) on behalf of the ATLAS Muon System

5 years HL-LHC

→ at 520 V (PCB-1)

Introduction

Increase of luminosity provided by LHC:

- → High Luminosity LHC (2029–2040): $\mathcal{L} = 7.5 \times 10^{34} \ cm^{-2} \ s^{-1}$ up to more than 7 times design luminosity
- > Huge increase of particle rates, mainly in forward regions
- New Small Wheels installed in 2021 in ATLAS - Substituting old wire detectors that would suffer of aging - Novel detector technologies to cope with the increase of particle rate \rightarrow sTGC and Micromegas for trigger and position measurement - Redundancy by using multiple detector layers:
 - 8 for Micromegas and 8 for sTGC in each sector of the wheel
- > Need to evaluate the long-term stability and the performance in high background environment

Irradiation at GIF++ facility

Irradiation of Micromegas detectors with a gamma-ray source in GIF++ facility at CERN:

- Radioactive source: ¹³⁷Cs 662 keV Gammas ~11.6 TBq
- Possible to tune the irradiation intensity using 3 filters: \rightarrow 24 combinations from Attenuation Factor=1 to 46000

GIF++ data

- Irradiation measured in terms of charge accumulated by the detector and values scaled to the areas of the PCBs
- Large difference of expected irradiation at LHC between the 1st strip of PCB-1 and PCB-2 :
- \rightarrow A factor \sim 3 less for PCB-2 being 43cm further from the beam axis
- Several years of HL-LHC equivalent have been accumulated so far

ATLAS Muon System Preliminary

16° Pisa Meetings on Advanced Detectors 2024 - La Biodola, Isola d'Elba

The Micromegas detector

Resistive Micro-Mesh Gaseous Structures (MM):

- \rightarrow Ar + 5%CO₂ + 2%iC₄H₁₀ gas mixture \rightarrow provides large gain and high-voltage stability
- Micro-mesh, grounded, transparent to electrons, divides drift and amplification regions
- > Drift field \sim 480 V/cm
- ➤ Amplification field ~40 kV/cm
- > Fast evacuation of positive ions: $\sim 100 \text{ ns}$
- > Strip (pitch = 0.45 mm) readouts stereo strips for 2nd coordinate
- > Spark protection thanks to a layer of resistive strips coupled capacitively to readout strips

Rates studies

- Rate values obtained scaling the measurements in ATLAS on Micromegas chambers [1] to the luminosity expected at HL-LHC
- Highest rate only on the first strips of PCB-1: \rightarrow up to 32 *kHz/cm*^2
- PCB-2 expecting at LHC a factor ~3 less in rate!!
- VMM channel saturation appearing at larger gamma intensities. Partial solution:
 - Larger bias voltage applied on VMM asic [2] channels (*slh* parameter setting):
 - \rightarrow faster restoration of the baseline
 - \rightarrow recovering partially hit occupancy

Performance after 2 years of irradiation

- Detector performances evaluated after 2 years of irradiation:
- No decrease of amplification gain:
- \rightarrow greater than 8000 at 520 V

C/C

— L1L3

- Spatial resolution at 0° < 100 µm achieved on irradiated chamber \rightarrow charge-centroid method used
- \rightarrow performance matching ATLAS design requirements
- \rightarrow showing no degradation of performances after irradiation
- Spatial resolution at 29° of 150 µm achieved on irradiated chamber
- \rightarrow cluster-time projection method [3] used
- \rightarrow best result obtained so far for inclined tracks
- \rightarrow time calibration of the readout channels fundamental
- Good resolution maintained also in presence of irradiation

Tracking efficiency studies

- VMM channel saturation effect impacting efficiency of PCB-1 \rightarrow First strips of PCB-1 at ~85% efficiency
- Factor ~3 less background rate for 1st strip of PCB-2 \rightarrow reaching already >90% efficiency
- Other PCBs wit lower rates at HL-LHC \geq \rightarrow >95% efficiency
- Overall good performances of ATLAS MM detectors expected in HL-LHC conditions \geq
- Redundancy of the several detector layers is exploited to recover the tracking efficiency

1 / Gamma Intensity [arb. units]

1 / Gamma Intensity [arb. units]

1 / Gamma Intensity [arb. units]

Timing studies

Time resolution important for trigger purposes

- A. Time residual of the earliest strips in back-to-back clusters, fitted with double-Gaussian \rightarrow weighted resolution reported (divided by $\sqrt{2}$)
 - \rightarrow First two layers of the detector used: $\Delta t = t_{I1}^{first} t_{I2}^{first}$
- B. Evaluated the time resolution also using the expected time:
 - \rightarrow From the firing strip position, extrapolate the position in the gap using the track angle
 - \rightarrow Expected hit time computed as $t_{exp} = \Delta z / v_{drift}$
 - $\rightarrow \Delta t = t_{strip} t_{exp} \rightarrow$ fitted with Gaussian

50 Q_{strip}

60

(fC)

Conclusions

- > ATLAS Micromegas chambers fundamental for end-cap muon reconstruction during **HL-LHC** operations
- Irradiation studies useful to understand detector stability and performances after long-term irradiation and with HL-LHC expected particle rates!
- Already reached several years of HL-LHC equivalents and continuing irradiation program at GIF++
- > No decrease of performance seen on irradiated chamber, with very good HV stability!
- > Very high efficiency and nominal resolution for perpendicular tracks, maintained also with high gamma intensity
- Some efficiency drop affecting only the PCB-1 at the HL-LHC expected rates, but average of 90% efficiency \rightarrow due to VMM channel saturation
- > Evaluated best results in inclined track position resolution up to $150 \ \mu m$ at higher gain
- Time resolution improving with higher gain, reaching 17 ns at 530 V, and 15 ns for larger strip charges
- Overall performances not suffering the irradiation accumulated so far, showing still nominal performances!

References:

- 1. ATLAS collaboration, NSW MicroMegas Cluster Rates, 2024, MDET-2024-01
- G. de Geronimo et al, The VMM3a ASIC, 2022, IEEE Trans.Nucl.Sci. 69 (2022) 4, 976-985 2.
- B. Flierl, Particle Tracking with Micro-Pattern Gaseous Detectors, 2018, PhD Thesis. 3.