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Abstract
The EPR Experiment aims to demonstrate alternative Frequency-Dependent Squeezing (FDS) for reducing broadband quantum noise in gravitational wave detectors. We designed two reflective mode-
matching telescopes (MMT) for an Einstein-Podolsky-Rosen (EPR) squeezing experiment. It can provide high mode matching for EPR entangled squeezed light. To ensure precise alignment and
reproducibility of the MMT, we placed optomechanics on a base plate with a reference plane. Beam profiling results and pre-simulated alignment process calculate the misalignment compensation length.
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MMT Opto-mechanical design MMT alignment procedure
Semi-kinematic matching design Prototype

* Following the MATS optomechanics
design [9]. It has key features
including a guide bump design and
alignment based on a beam profiler.

* The prototype alignment procedures
using a Zeiss Contura G2 Coordinate
Measurement Machine (CMM) (Fig 6-7)
[10].

* Alignment errors were reduced by
reprocessing the 'adapter' component.
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 Each mirror mount is furnished with
an 'adapter' component featuring a
guide surface, which effectively limits
the degree of freedom of the mount,
ensuring precision and stability (Fig 4).

Waist fitting and compensation method

* The beam profile measurement involves the

Fig 4. Contact between the guide installation of a beam profiling camera using an

surface and the reference planes ‘adapter’ system and rail (fig.9) for the waist
fitting.

e This setup utilizes two irises and a camera for
boresight alignment (Fig.10).

e Alignment errors were compensated by

Baseplate system

* All optics are positioned on a
common base plate (Fig.5),
facilitating precise pre-positioning
with an accuracy of approximately
100 pm.
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MMT Alignment results(preliminary)
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