## **PSI**

# **R&D** of a timing measurement ASIC for possible HL-LHC upgrade

**Abderrahmane GHIMOUZ** Paul-Scherrer-Institute (PSI)/NUM/LTP/HEP abderrahmane.ghimouz@psi.ch



Introduction

The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) will undergo a major upgrade for the high-luminosity phase (HL-LHC) starting in 2029. The goal is enhancing the detector rate capabilities and adding precision timing measurements to mitigate pile-up effects. With potential future improvements extending the timing coverage to  $\eta = 4$ , Low Gain Avalanche Detectors (LGAD) based pixels are being considered to replace part of the pixel detector end-caps.



### Ghallenge

In this context, we aim to design a readout Application-specific integrated circuit (ASIC) capable of operating with LGAD pixel detectors in the environment of the pixel detector end-caps at the HL-LHC for CMS. It is designed in a 28 nm CMOS technology, to process the signals from LGADs that will be used as the sensors for this timing layer.

$$\sigma_t^2 = \sigma_{\text{Landau}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Timewalk}}^2 + \sigma_{\text{TDC}}^2 + \sigma_{\text{Jitter}}^2$$
**Sensor (characterization) To model and optimize (FEE architecture)**

| Property                    | Value                                                 |
|-----------------------------|-------------------------------------------------------|
| Pitch                       | 100 x 100u / 200 x 200u                               |
| Input capacitance           | ~ 1 pF (including parasitic)                          |
| Time res RMS                | 30 ps                                                 |
| Max latency                 | 500 KHz to 1 MHZ per pixel                            |
| Max dead time               | < 250 ns                                              |
| Total power density         | 1 W/cm2                                               |
| Threshold Level             | 1000 e <sup>-</sup>                                   |
| Dynamic range (Q)           | Equivalent 1000 e <sup>-</sup> to 100 Ke <sup>-</sup> |
| Pixel rate at hottest pixel | 50 KHz                                                |



MATLAB

Analysis

scripts





#### In this first step, we focus on studying the effect of the key parameters of the preamp on the timing resolution (few Ke<sup>-</sup> signals) using an ideal STD and TDC. The integration





- Initial system specifications are confirmed  $\rightarrow$  more sensor characterizations are planned  $\rightarrow$  New sample designs;
- Behavioral Model under development  $\rightarrow$  Multiple FEE solutions are investigated and optimized to reach the timing requirements → multi-flavors ASIC;
- ✓ **First 28nm** layout in progress;

#### References

- CMS Collaboration, A MIP Timing Detector for the CMS Phase-2 Upgrade, Report number: CERN-LHCC-2019-003, CMS-TDR-020;
- Senger, M.; Macchiolo, A.; Kilminster, B.; Paternoster, G.; Centis Vignali, M.; Borghi, G. A Comprehensive Characterization of the TI-LGAD Technology. Sensors 2023, 23, 6225.
- Ivan Liebgott and Ascension Vizinho-Coutry. "Integration of the model-based design -Industrial approach for teaching engineering science." In: 2016 IEEE Global Engineering Education Conference (EDUCON). 2016, pp. 697–701. DOI:10.1109/EDUCON.2016.7474626.

