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 The CUPID (CUORE Upgrade with Particle Identification) experiment
will aim to observe the double beta decay without neutrinos emission
(OvBB) by employing a large and modular low-temperature
calorimeter.

The OvBB decay is a second-order rare decay which has been
theorised to occur if and only if the neutrinos are Majorana
fermions (the neutrino and its antiparticle are the same entity).
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 The calorimeter will be made of 1596 scintillating “‘1“ d w

Li,MoO, (LMO) crystals grouped in towers and 300K > - St

enriched in 100-Mo, isotope with double-beta (2v[3) half- 40K —— ' e 'J,

time decay of T%/2 = 71x10%®yr and Qg = a—— ity

3034 keV. '

800mK —>

* These crystals will be contained in a cryostat which has j L

been already developed for the CUORE experiment and J > omKk—>
that reaches ~ 10 mK.

« The impinging particles release energy in the crystals
in the form of phonons and photons. A thermal
sensor, a Germanium Neutron Trasmutation Doped (Ge- m
NTD) thermistor, is attached to the LMO to measure the
crystal heating due to the phonons thermalisation. The
photons escape the crystal and are absorbed by a thin Ge
slab, which is heated up and is read out by another Ge-

NTD-Ge
thermistor
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« Since the light signals are faster (~ 0.5 ms rise time) than heat signals (~ 5 ms rise time), the simultaneous readout of heat O = Vamp + faw 0.8 :é,
and light will contribute to the abatement of the 2vf33 pile-up in the region of interest. RS
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* The employment of the Neganov-Luke effect for the light channel will result in twofold improvement: enhanced pile-up amplifier noise S 06 2
rejection due to an increase in signal-to-noise ratio (SNR) and a reduction in electronics jitter (better time resolution). The * fsw:amplifier @ 102 o
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application of an electric field across the slab results in an additional increase in temperature, above that generated by |, - signal voltage = <
the photon flux, caused by the acceleration of the photon-induced electron-hole pairs. af,rlnliitude % 04
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« The CUPID experiment will aim at reaching a ~ 10™* counts/(keV - kg - yr) background level, about two orders of 0o 2
magnitude lower compared to the CUORE experiment. 101 ' %
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« CUPID will have an expected half-life discovery sensitivity of T'/2 > 1 x 10?7 yr, corresponding to an effective 0 *

neutrino mass of mgg < 12 — 20 meV, covering the whole inverting hierarchy and more. 1071
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Signal detection and acquisition

* A dedicated biasing circuit makes a current flow through the thermistor.
* When there is an energy release in the absorber, the thermistor transforms the heat signal into an electrical (voltage) signal, which is then fed into the acquisition system.

* The acquisition system is made of a differential voltage pre-amplifier, a Programmable Gain Amplifier (PGA), a low-pass filter and a Digital Acquisition system (DAQ). The DAQ data is sent to a PC
system via a standard Ethernet connection. The lines are optically coupled, allowing the control room to be located anywhere.

A very stable (~ ppm/°C) pulser circuit generates an electrical signal onto a stable resistor glued to the crystal, the so-called heater. These pulses emulate the release of energy by particles in
every crystals, enabling the detection and compensation of the long-term drift in the energy conversion gain of the detector.
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