Operational experience and performance of the Belle II Silicon Vertex Detector after the first SuperKEKB Long Shutdown

At 16th Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, Italy

Fumiaki Otani* on behalf of the Belle II SVD collaboration

SuperKEKB [1] **and Belle II** [2] [1] Y. Ohnishi *et al.*, *PTEP* 2013, 03A011 (2013). [2] T. Abe *et al.*, *arXiv*:1011.0352.

- SuperKEKB collides 7 GeV e^- with 4 GeV e^+ at $\sqrt{s} = 10.58$ GeV
- Target instantaneous luminosity 6×10^{35} cm⁻² s⁻¹ to collect 50 ab⁻¹ data sample
- Belle II records collision data for precision measurements and searches for beyond-the-standardmodel physics
- **Belle II Silicon Vertex Detector (SVD)** [3] [3] K. Adamczyk et al., JINST 17 P11042 (2022)
- The SVD consists of 4 layers of double-sided silicon-strip detectors (DSSDs), which are outside 2 layers of pixel detectors (PXD)
- The DSSDs are 300~320 um thick and have readout strip pitch 50/75 um (P side), 160/240 um (N side)
- Readout with APV25 ASIC that has a 50 ns shaping time
- Provides precise hit information for tracking and vertexing, as well as dE/dx information for particle identification

Belle II Vertex Detector: VXD = SVD + PXD

S

PXD SVD

Photo of the full PXD + half SVD

Belle II detector

done

150

100

Hit time (ns)

PMU

UTokyo

2022 June 2024		ary We are Here! Just beginning	
Run 1	Long Shutdown 1	Run 2	
• Recorded integrated luminosity $\mathcal{L}: 426 \text{ fb}^{-1}$	 VXD reinstallation with new PXD modules with the same SVD 	 Smooth and stable operation Physics performance is as good as Run 1 Belle II Online luminosity Recorded Daily 	Exp: 30-33 - All runs 70
• Achieved instantaneous luminosity $\mathcal{L}: 4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$	 SVD was split into its two halves to allow the new PXD installation 	 SuperKEKB is trying to increase its beam condition to SuperKEKB is trying to increase its beam condition to 	·1 ·1 ·50
 Smooth and stable operation without major issue 	 Several SVD tests were performed at each step of the VXD reinstallation to check its condition and spot 	 achieve higher instantaneous luminosity Higher background dose is anticipated, we 1.0 	- 40
 Excellent SVD performance ✓ Good SNR (13-30) 	 problems Lowered cooling temperature to accommodate a higher PXD power consumption 	 monitor the SVD status continuously Checking noise, calibration constant, and leakage current 	- 20
✓ Large hit efficiency (\gtrsim 99%)	Checked the VXD alignment and performance using		

operations

and

meline

SVD performance after LS1

SVD detachment from PXD1

rejection

background

Future

2

- Noise increased by 10 ~ 30% during Run 1 due to radiation damage on the sensors • L6 S2
 - Measured radiation dose in Layer 3 is < 70 krad during Run 1</p>
- Reduction in noise by up to 10% during LS1 due to lower operating temperature and annealing effect on the sensor Stable level,
- Physics performance with Run 2 noise level is as good as Run1

- \Rightarrow No severe damage observed so far New VXD installation SVD attachment to PXD2 3 4 Clean room All successfully
- Current hit occupancy is below 1%, but it is expected to rise as the background increases with higher beam luminosity in the future
- Higher occupancy degrades tracking performance by increasing the number of fake tracks
- We will implement hit-time selection and cluster-grouping methods, which are based on hit time to reject background and enhance occupancy acceptance,
 - With excellent hit-time resolution (< 3 ns) to remove off-time tracks
 - SVD has a feature that offers a 2000 times faster computing speed than a central drift chamber to provide collision time (T0). It speeds up the High-Level Trigger reconstruction and helps it cope with HLT reconstruction in the high luminosity condition

Hit-time selection

Cluster-grouping

- The hit time *t* is determined by the peak part of the signal sampling in the sampling window (6 samples).
- The peak position in the sampling window varies with the collision, enabling the identification of hits from triggered collisions

¹⁴Other hits from Hits from target 12 another beamcollision 10 bunch exp=24 run=1726 evt=660650 **Total Clusters: 114** 2 0_150

-100

-50

 Classified hit time with respect to trigger on an event-by-event basis.

50

 Select a group close to 0 and prominent as a signal group to form tracks

✓ Hit efficiency also keeps high ≥ 99%

due to temperature effects still not corrected.

- ✓ Number of total masked strips ~ 1%
- ✓ No evidence of the radiation damage having impacted the full depletion voltage
- A 90 MeV *e*⁻ beam irradiated SVD sensors up to 10 Mrad at ELPH, Tohoku Univ.
 - Estimated radiation dose is 0.2 Mrad/year on layer 3 with design luminosity
 - ✓ Type inversion occurs at 2 Mrad, equivalent neutron fluence fluence $6 \times 10^{12} n_{eq}/cm^2$
 - ✓ Linear correlation between dose and leakage current as NIEL hypothesis
 - ✓ The correlation is confirmed in the installed SVD sensors, and we have a good safety margin its slope is consistent with the irradiation study
 - ✓ Type inverted Irradiated sensor confirmed to collect charge well after 10 Mrad irradiated

 \Rightarrow Removed 50% off-time track with keeping signal efficiency > 99%

 \Rightarrow Fake track rate can be reduced by 15%, outperforming the hit-time selection method.

SVD hit time: Cluster-on-track

Applied both methods to classified

- ✓ Hit-time-selection can reject the red background area and the cluster-grouping can reject additional fake signals (blue area) coming from the off-time cluster contamination
- ✓ These improvements lead to an increase in acceptable occupancy for track reconstruction to about 6% in layer 3

Ongoing SNR at each sampling point of the APV25 differs between the background and the signal \rightarrow Useful for 3-sample sampling to reject bkg and to reduce the SVD DAQ dead time studv

* fumiaki.otani@ipmu.jp

16th PISA meeting on Advanced Detectors, La Biodola, Isola d'Elba, Italy, May 26-June 1, 2024

Physics performance in Run2

as good as in Run1

Fumiaki Otani (School of Science, The University of Tokyo)

Radiation damage study