

(3) Methodology

Measurements taken for four sensor thicknesses, before and after irradiation at fluences $\Phi = 1 \times 10^{14}$ to $5 \times 10^{15} n_{eq}/cm^2$

Thickness / μm	p⁺ dose	C dose	Diffusion	Bulk
45	1.14	1.0	CBL	n type*
30	1.12	1.0	CBL	high $ ho$
20	0.96	1.0	CBL	low <i>p</i>
15	0.94	1.0	CBL	low <i>p</i>

*45 μm substrates are **type inverted**, where

the bulk moves from p type to n type

IV characteristics

- Perform **bias** scans up to depletion at 20, 0, and -20 °C
- **CV** characteristics
- **I** Determine the **depletion voltage** of the gain implant, V_{gl}
- Extract the **rate of degradation**, c_A , in V_{gl} post-irradiation Gain profile
- Extract the contribution due to the gain implant
- Compare the **profiles** for different fluences

4) IV characteristics

Comparison of temperature and irradiation on IV trends

- Gain layer breakdown visible at low biases ~30 V
- Irradiation degrades this gain layer breakdown "bump"
- *V_{gl}* decreases as fluence increases (conversely to the bulk)
- Bulk breakdown trend identical to PIN sensors (not shown) Can study the gain degradation in CV measurements

6) Gain Profile

Transient current technique performed

