

Latest results from the CUORE experiment

Istituto Nazionale di Fisica Nucleare

E. Ferri INFN Sez. di Milano-Biocca On behalf of the CUORE collaboration

Frontier Detectors for Frontier Physics

Searching for 0vßß decay **CUORE experiment** Beyond Standard Model process ($\Delta L = 2$) **Cryogenic Underground Observatory for Rare Events** $(A, Z) \longrightarrow (A, Z+2) + 2e^{-}$ - Cryogenic experiment at tonne-scale - utilising (nat)TeO₂ thermal detectors operated at ~10 mK Not yet observed: $T^{1/2}_{0\nu\beta\beta} > 10^{22-26}$ yr - Located at Laboratori Nazionali del Gran Sasso (Italy) Impacts of a potential observation: • Existence of Lepton Number violating processes Search for rare events and for physics beyond the SM • Presence of a Majorana term for the neutrino mass, Search for $0\nu\beta\beta$ decay of 130Te ($Q\beta\beta = 2527.5$ keV) 0 **R** 2νββ m_{ββ} Temperature sensor Why thermal detectors... \rightarrow Constraints on neutrino mass hierarchy and scale Heat bath \rightarrow Hint on origin of matter/anti-matter asymmetry 0νββ - E_{dep} converted into ΔT (phonons) (baryogenesis via leptogenesis involving Majorana bsorber Crvst - Detector = $\beta\beta$ source neutrinos) Total electron energy Q_{BB} - Large calorimeters (~kg scale) -Sensitive from keV to MeV scale **Broad experimental program** to search - Optimal **E resolution** ~ **0.1%**@MeV for $0\nu\beta\beta$ decay with different isotopes: Thermal coupling release ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe ... **Cuore challenges** Searching for 0vßß decay Low temperature and low vibrations 988 TeO₂ detectors at \sim 10 mK stable over time 700 꽃 CUORE new release - Multistage cryogen-free cryostat 2039.0 kg yr TeO 600 - Mechanical vibration isolation: passive and active 500 క్ 500 5 10 mK

systems

Low background

- Deep underground location
- Strict radio-purity controls on materials and assembly
- Passive shields from external and cryostat radioactivity
- Detector: high granularity and self-shielding

More than 2.5 tonne yr

1038.4 kg vr TeO

400

¹³⁰Te 0νββ decay search

$0\nu\beta\beta$ peak search on unblinded data:

- Fit of the unblinded data
- Systematics: include nuisance parameters (efficiencies, energy bias ...)

No evidence of signal at $Q\beta\beta$ in ROI. Posterior of ΓOv

New CUORE $0\nu\beta\beta$ ¹³⁰Te decay T_{1/2} limit with 2 tonne year exposure

Compare with 2 tonne yr sensitivity: $S_{0v}^{1/2}$ (¹³⁰Te) = 4.4 × 10²⁵ yr (90%CI); Probability to get a more stringent limit given the current sensitivity: 67%

Limit on the effective Majorana mass, assuming light Majorana neutrino-exchange: $m_{\beta\beta} < 70-240$ meV

References

- Adams D. et al. (CUORE collaboration), *Nature* 604 (2022) 7904, 53-58, https://www.nature.com/articles/s41586-022-04497-4
- Adams D. et al. (CUORE collaboration),
- Prog.Part.Nucl.Phys. 122 (2022) 103902,
- https://doi.org/10.1016/j.ppnp.2021.103902
- Dell'Oro S. et al., Cryogenics 102, 9, (2019)
- https://doi.org/10.1016/j.cryogenics.2019.06.011

Alduino C. et al. (CUORE collaboration), Phys. Rev. Lett. 120, 132501, (2018), https://doi.org/10.1103/PhysRevLett.120.132501
Alduino C. et al. (CUORE collaboration), Phys. Rev. Lett. 124, 122501, (2020), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.122501
Adams D. et al. (CUORE collaboration), Nature 604 (2022) 7904, 53-58, https://www.nature.com/articles/s41586-022-04497-4
Vetter, K.J., Beretta, M., Capelli, C. et al., Eur. Phys. J. C 84, 243 (2024). https://doi.org/10.1140/epjc/s10052-024-12595-y

16th Pisa Meeting on advance detectors, 26 May 1 June 2024 La Biodola, Isola dell'Elba