Detector-embedded reconstruction of complex primitives using FPGAs

Giovanni Punzi - Università di Pisa & INFN on behalf of <u>RETINA group</u> in LHCb Real Time Analysis project

The need for speed

- Progress of experiments goes together with increasing data processing rate.
- Flavor physics at low Pt most demanding: LHCb riding on top, in spite of smaller size and lower lumi than other LHC experiments.
- LHCb is effectively "processing-limited"
- I describe an effort to accelerate LHCb reconstruction, using FPGAs closely integrated with detector readout.

The LHCb Data Processing model

- Physics of Flavor physics at low Pt: no easy Level-O selection, need to process in detail the whole event.
- Triggerless readout of the whole detector + full event reconstruction before first trigger decision is made (often referred to as 'trigger less', or 'full-software trigger')
- Two-level DAQ: HLT1 (full reco, for trigger purpose), HLT2 (physics reconstruction + final selection).
 - Alignment happens between HLT1 and HLT2, to make sure HLT2 reco is final. (Large disk buffer in the middle)

The LHCb Data Processing model

- Physics of Flavor physics at low Pt: no easy Level-0 selection, need to process in detail the whole event.
- Triggerless readout of the whole detector + full event reconstruction before first trigger decision is made (often referred to as 'trigger less', or 'full-software trigger')
- Two-level DAQ: HLT1 (full reco, for trigger purpose), HLT2 (physics reconstruction + final selection).
 - Alignment happens between HLT1 and HLT2, to make sure HLT2 reco is final. (Large disk buffer in the middle)
 - In Run3, HLT1 moved physically inside the Event Builder to save on data transport, and turned to GPUs for better efficiency, cost.
- What can we still improve, in view of the Upgrade-II of LHCb, with ~7x larger Lumi?

- Push processing before EB: reconstruct intermediate data structures ("primitives") using ~local info.
 - Ex. Track segments, muon stubs...
 - Logically embed in the detector block: make primitives look like "Raw Data" to the DAQ.

- Push processing before EB: reconstruct intermediate data structures ("primitives") using ~local info.
 - Ex. Track segments, muon stubs...
 - <u>Logically embed in the detector block:</u> make primitives look like "Raw Data" to the DAQ.
- Advantages:
 - Accelerate HLT reconstruction: easier to combine segments than hits, both in HLT1 e HLT2.
 - Reduce data flow at the source (drop hits not on a track, for instance)

- Push processing before EB: reconstruct intermediate data structures ("primitives") using ~local info.
 - Ex. Track segments, muon stubs...
 - <u>Logically embed in the detector block:</u> make primitives look like "Raw Data" to the DAQ.
- Advantages:
 - Accelerate HLT reconstruction: easier to combine segments than hits, both in HLT1 e HLT2.
 - Reduce data flow at the source (drop hits not on a track, for instance)
- Drawback: it is hard !
 - Can't use time-multiplexing 'a la GPU': (dividing rate by ~300). Need to *actually* process a new event every 25ns.
 - Large b/w, little buffering, constrained latency.
 - CMS' track "vectors/stubs" are a solution using on-detector ASICs [see Macchiolo on Monday]
 - For more complex primitives we adopted (off-detector) FPGAs , programmed at data-flow level.

A 'complex' primitive: hits in the VELO pixel detector

- Hits in the VELO detector of LHCb appear as 2D clusters of pixels [see dedicated VELO talk]
- Firmware deployed in Run3 in FPGA readout boards to make clusters on the fly (Arria 10)
 - Original plan was to do this during HLT1 reconstruction
- Pixels read out as 2*4 arrays (SuperPixels, SP). Clusters found by unpacking them into active
 matrices, where each pixel actively checks if it belongs to a pattern. Centroid evaluated by LUT.
- Fast solution, but unmanageable to cover the 40M pixels of the VELO
- Solution: dynamically allocate small matrixes where active pixels are found [IEEE TNS 70, 6 (2023)]
 -> allows to process data continuously, yielding a throughput of 10¹¹ hits/s

<]										
	0					0	1			
	0	1				0	0	1		
	0	0	0				0	0	0	
.UT. 2023)]	0	() () () () () () () () () () () () () (Not active pixel Cluster candidate				1	Active pixel Ancho pixel		
			Don' care	t						

Benefits of embedded Cluster finding

- Quality of real-time cluster reconstruction as good as CPU algorithm
 - Raw pixel information **dropped** and replaced by hit positions during readout (saves 15% of b/w)
- FPGA implementation saves 12% of HLT1 computing power, and uses 1/50th of the electrical power [IEEE TNS 70, 6 (2023)]

-> Now established as the default method at LHCb.

• Side benefits: real-time availability of 10¹¹ hits/s **in accessible way** enables further applications (e.g. <u>precision monitoring of beamline</u>)

Benefits of embedded Cluster finding

- Quality of real-time cluster reconstruction as good as CPU algorithm
 - Raw pixel information **dropped** and replaced by hit positions during readout (saves 15% of b/w)
- FPGA implementation saves 12% of HLT1 computing power, and uses 1/50th of the electrical power [IEEE TNS 70, 6 (2023)]

-> Now established as the default method at LHCb.

• Side benefits: real-time availability of 10¹¹ hits/s **in accessible way** enables further applications (e.g. <u>precision monitoring of beamline</u>)

'Local' application: all required data accessible in a single FPGA Next we discuss a more complex solution involving multiple FPGAs

'Retina' Architecture

'Retina' Architecture

The "artificial retina" architecture: what happens inside a cell

- Each cell computes its response (R) as the weighted sum of inputs
 - For tracking, hits closer to the reference track get larger weight (Gaussian in the example)
- Digital analogue of "receptive fields" in vision processing in the natural brain
 - Hence the historical name 'retina architecture'
 - More specific than a generic 'neural net'
 - Calculation must happen is zero-time for the system to work

The "artificial retina" architecture: what happens in the cell matrix

INPUT all cells in parallel CLUSTER FIND all cells in parallel

OUTPUT sequential

- 3 steps happen simultaneously (pipelined) while input is coming, in order not to stop the flow:
 - 1. All cells are filled in parallel
 - 2. Clusters are found by local negotiations between neighboring cells
 - 3. Output of cluster centers are queued to output
- A final pipeline stage may be added to perform application-dependent processing

Hardware demonstrator

- A complete Retina demonstrator was installed and tested at the LHCb TestBed facility. Culmination of a decade-long effort.
- Reconstruct a VELO quadrant using 8 PCIe-hosted FPGA cards (Stratix-10, 2.8 MLE). (Takes VELO clusters as input)

- Test on LHCb MC @Run3 luminosity (2x10³³ cm⁻²s⁻¹).
 - Bit-by-bit comparison with software emulator gives perfect matching - running uninterruptedly for weeks.
 - Achieved **20 MHz event rate** (LHCb rate ~27 MHz)
 - Easily on target with optimization and current FPGAs
 - No buffering, sub-µs latency
 - Low power consumption 550 W

Detail of the switching network

- Topology: 8-nodes full-mesh network.
- 28 full-duplex optical links at 25.8 Gbps, total bandwidth 1.4 Tb/s.
- Open source protocol Intel SuperLite II v4
- Traffic managed by LUTs dedicated optimization code for load-balancing
- Implemented via optical patch panel, allows for easy reconfiguration

Results on live LHCb data

- Currently Running parasitically on real LHCb data during Run 3 physics data taking (at reduced rate)
- Online LHCb alignment constant applied on the fly.
- Tracks distribution from demonstrator (right) very similar to HLT2 output (left).

Results on live LHCb data

- Currently Running parasitically on real LHCb data during Run 3 physics data taking (at reduced rate)
- Online LHCb alignment constant applied on the fly.
- Tracks distribution from demonstrator (right) very similar to HLT2 output (left).

LHCb MinBias Montecarlo $\mathcal{L}=2x10^{55} \text{cm}^{-2}\text{s}^{-2}$

 $400 \vdash$ Rescaled \mathscr{L} by merging events

450

350

300

250

200 E

150

100 듣

50

l/Event Rate [ns]

- Emulate higher luminosities by event overlapping
 - Performance LINEAR with occupancy and size, up to very high lumi

Rescaled $\mathscr{L} = 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ by merging events

[ns]

220

Results on live LHCb data

- Currently Running parasitically on real LHCb data during Run 3 physics data taking (at reduced rate)
- Online LHCb alignment constant applied on the fly.

[ns]

1/Event Rate

220

200

180

160140

1201

80

20

Tracks distribution from demonstrator (right) very similar to HLT2 output (left).

Run 5

15

20

 $\mathscr{L}[\mathrm{cm}^{-2}\mathrm{s}^{-1}]$

LHCb MinBias Montecarlo $\mathcal{L}=2x10^{55} \text{cm}^{-2}\text{s}^{-2}$

 $400 \vdash$ Rescaled \mathscr{L} by merging events

5

10

450

350

300

250

200 E

150

100╞-

50

Run 3

l/Event Rate [ns]

100 60 F 40 E Build a real application \implies ∃×10⁻³ 0.2 0.4 0.6 í٨

1/N_{cells}

DWT project: reconstruction of SciFi track primitives

- Currently used as 'seeds' for HLT1 tracking sequence
- Heavy to compute (before GPUs only possible at HLT2)
- Implementation as 2-step retina device (axial layers, then stereo)
- Requires ~100 FPGA boards (new LHCb readout boards)

100 120 140 160 180 200 220 240

Throughput tests on the actual HLT1 system

- Effect on Full HLT1 sequence, long tracks matching VELO tracks and T-tracks:
 - Execution time: Replacing seeding with *primitives* decoding and refitting.
 - Total: 7.2 μs

Ο

- Total: 5.4 μs
- Seeding: **1.5 µs** *Primitives* decoding and refitting: **0.06 µs**
- Overall HLT1 throughput increased by 33%. Makes room for further HLT1 functionality.

Plan to implement for next LHCb run (Run 4)

For more information

- DAQ enhancement TDR submitted by LHCb to the LHCC (not yet public)
 - Contains Run 4 proposal for Both the DWT and the new FPGA board of LHCb
- Detailed technical description already available as a <u>LHCb public note</u>

List of Authors

Wander Baldini¹, Giovanni Bassi^{2,3}, Andrea Contu⁴, Riccardo Fantechi², Jibo He^{5,6}, Brij Kishor Jashal⁷, Sofia Kotriakhova^{1,8}, Federico Lazzari^{2,9}, Maurizio Martinelli^{10,11}, Diego Mendoza⁷, Michael J. Morello^{2,3}, Arantza De Oyanguren Campos⁷, Lorenzo Pica^{2,3}, Giovanni Punzi^{2,9}, Qi Shi⁵, Francesco Terzuoli^{2,12}, Giulia Tuci¹³, Ao Xu², Jiahui Zhuo⁷

¹ INFN Sezione di Ferrara, Ferrara, Italy
 ² INFN Sezione di Pisa, Pisa, Italy
 ³ Scuola Normale Superiore, Pisa, Italy
 ⁴ INFN Sezione di Cagliari, Monserrato, Italy
 ⁵ University of Chinese Academy of Sciences, Beijing, China
 ⁶ Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
 ⁷ Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
 ⁸ Università di Ferrara, Ferrara, Italy
 ⁹ Università di Pisa, Pisa, Italy
 ¹⁰ INFN Sezione di Milano-Bicocca, Milano, Italy
 ¹¹ Università di Siena, Siena, Italy
 ¹³ Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg, Germany

A 'complex' primitive: hits in the VELO pixel detector

- Hits in the VELO detector of LHCb appear as clusters of pixels [see dedicated VELO talk]
- Firmware deployed in Run3 in FPGA readout boards to reconstruct clusters on the fly (Arria 10)
 - Original plan was to do this during HLT1 reconstruction
- Pixels read out as 2*4 arrays (SuperPixels, SP). Clusters found by unpacking them into active matrices, where each pixel actively checks if it belongs to a pattern. Centroid evaluated by LUT.
- Fast solution, but unmanageable to cover the 40M pixels of the VELO
- Solution: dynamically allocate small matrixes where active pixels are found. Input data travel along a chain of empty matrices:
 - When a SP hits an empty matrix, it allocates it to its position
 - It a SP hits a matrix it belongs to, it fills the matrix at the right position
 - Cluster finding happens in parallel in all matrices

Benefits of embedded Cluster finding

- Quality of real-time cluster reconstruction as good as CPU algorithm
 - Raw pixel information **dropped** and replaced by hit positions during readout (saves 15% of b/w)
- FPGA implementation saves 12% of HLT1 computing power, and uses 1/50th of the electrical power [IEEE TNS 70, 6 (2023)]

-> Now established as the default method at LHCb.

- $_{\odot}$ Side benefits: real-time availability of 10^{11} hits/s in accessible way enables further applications
- Example: measurement of beam position vs time exploiting cylindrical symmetry of hit distribution
 - Large rate require no track reconstruction ('trackless')
 - \circ O(μ m) precision, continuous monitoring

Benefits of embedded Cluster finding

- Quality of real-time cluster reconstruction as good as CPU algorithm
 - Raw pixel information **dropped** and replaced by hit positions during readout (saves 15% of b/w)
- FPGA implementation saves 12% of HLT1 computing power, and uses 1/50th of the electrical power [IEEE TNS 70, 6 (2023)]

-> Now established as the default method at LHCb.

- $_{\odot}$ Side benefits: real-time availability of 10^{11} hits/s in accessible way enables further applications
- Example: measurement of beam position vs time exploiting cylindrical symmetry of hit distribution
 - Large rate require no track reconstruction ('trackless')
 - \circ O(μ m) precision, continuous monitoring

'Local' application: all required data accessible in a single FPGA Next we discuss a more complex solution involving multiple FPGAs

Emulation study of DWT performance

- Studies performed with realistic device Emulator, running on official LHCb MC productions.
- Tracking quality of primitives is at a level close to HLT1 will be refined to tracks in HLT1 processing
 - Efficiencies ~90%, Ghost rates ~15%

DWT tracking performance

		0	
Track type	MinBias	$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$B_s^0 \to \phi \phi$
Long, $p > 3 \text{GeV}/c$	85(86)	83 (84)	84 (85)
Long, $p > 5 \text{GeV}/c$	90(91)	89 (90)	89 (89)
Long from B not e^{\pm} , $p > 3 \text{GeV}/c$	-	-	88 (87)
Long from B not e^{\pm} , $p > 5 \text{GeV}/c$	-	-	90(90)
Down, $p > 3 \text{GeV}/c$	84 (85)	$83\ (84)$	83 (84)
Down, $p > 5 \text{GeV}/c$	89(91)	$88 \ (89)$	88 (89)
Down from strange not e^{\pm} , $p > 3 \text{GeV}/c$	-	$83 \ (83)$	-
Down from strange not e^{\pm} , $p > 5 \text{GeV}/c$	-	$88 \ (88)$	-
Down from strange not long not e^{\pm} , $p > 3 \text{GeV}/c$	-	$83\;(83)$	-
Down from strange not long not e^{\pm} , $p > 5 \text{GeV}/c$	-	$88 \ (89)$	-
ghost rate	16(10)	17(12)	17(13)
ghost rate / (1 - ghost rate)	0.2(0.1)	0.2 (0.1)	0.2(0.1)

• Fiducial requirements: $p_T > 200 \text{ MeV/c}; 2 < \eta < 5.$

Event-averaged values in brackets

• Performance similar to current HLT1 already at the primitive level.

Throughput tests on the actual HLT1 system

- **T-track seeding** (computational heavy) **x6 speedup with primitive-based** reconstruction
- Effect on Full HLT1 sequence, long tracks matching VELO tracks and T-tracks:
- Execution time: Replacing seeding with *primitives* decoding and refitting.
 - Total: **7.2 µs** Ο

Ο

- Total: **5.4 µs** Ο Seeding: **1.5 µs**
 - *Primitives* decoding and refitting: **0.06 µs**
- Overall HLT1 throughput increased by 33%. Makes room for further HLT1 functionalities.

Plan to implement for next LHCb run (Run 4)