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The LHCb Data Processing model

HLT1 HLT2
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e Physics of Flavor physics at low Pt: no easy Level-0 selection, need to process in detail the whole event.
e Triggerless readout of the whole detector + full event reconstruction before first trigger decision is made
(often referred to as 'trigger less', or 'full-software trigger')
e Two-level DAQ: HLT1 (full reco, for trigger purpose), HLT2 (physics reconstruction + final selection).
e Alignment happens between HLT1 and HLT2, to make sure HLT2 reco is final.
(Large disk buffer in the middle)



The LHCb Data Processing model
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e Physics of Flavor physics at low Pt: no easy Level-0 selection, need to process in detail the whole event.
e Triggerless readout of the whole detector + full event reconstruction before first trigger decision is made
(often referred to as 'trigger less', or 'full-software trigger')
e Two-level DAQ: HLT1 (full reco, for trigger purpose), HLT2 (physics reconstruction + final selection).
e Alignment happens between HLT1 and HLT2, to make sure HLT2 reco is final.
(Large disk buffer in the middle)
e In Run3, HLT1 moved physically inside the Event Builder to save on data transport, and turned to
GPUs for better efficiency, cost.
What can we still improve, in view of the Upgrade-Il of LHCb, with ~7x larger Lumi ?
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Evolvmg towards primitive-based reconstruction
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Evolvmg towards primitive-based reconstruction

e - HLT2
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e Push processing before EB: reconstruct intermediate data structures ("primitives") using ~local info.
e Ex. Track segments, muon stubs...
e Logically embed in the detector block: make primitives look like "Raw Data" to the DAQ.
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Evolving towards primitive-based reconstruction
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e Push processing before EB: reconstruct intermediate data structures ("primitives") using ~local info.
e Ex. Track segments, muon stubs...

e Logically embed in the detector block: make primitives look like "Raw Data" to the DAQ.

e Advantages:

e Accelerate HLT reconstruction: easier to combine segments than hits, both in HLT1 e HLT2.
e Reduce data flow at the source (drop hits not on a track, for instance)



Evolving towards primitive-based reconstruction
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Push processing before EB: reconstruct intermediate data structures ("primitives") using ~local info.

e Ex. Track segments, muon stubs...

e Logically embed in the detector block: make primitives look like "Raw Data" to the DAQ.
Advantages:

e Accelerate HLT reconstruction: easier to combine segments than hits, both in HLT1 e HLT2.

e Reduce data flow at the source (drop hits not on a track, for instance)
Drawback: it is hard !
e Can't use time-multiplexing 'a la GPU'": (dividing rate by ~300). Need to actually process a new event every 25ns.
e Large b/w, little buffering, constrained latency.
e CMS' track "vectors/stubs" are a solution using on-detector ASICs [see Macchiolo on Monday]
e For more complex primitives we adopted (off-detector) FPGAs , programmed at data-flow level.




e Hits in the VELO detector of LHCb appear as 2D clusters of pixels [see dedicated VELO talk] .

e Firmware deployed in Run3 in FPGA readout boards to make clusters on the fly (Arria 10) n

A 'complex' primitive: hits in the VELO pixel detector
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e Oiriginal plan was to do this during HLT1 reconstruction ﬂ 4 O
0/0]0 0|00
e Pixels read out as 2*4 arrays (SuperPixels, SP). Clusters found by unpacking them into active
matrices, where each pixel actively checks if it belongs to a pattern. Centroid evaluated by LUT. @ Not active Active
; 1]
e Fast solution, but unmanageable to cover the 40M pixels of the VELO pixel pixel
e Solution: dynamically allocate small matrixes where active pixels are found [IEEE TNS 70, 6 (2023)] . g;;ﬁ;te . ';T(ZTN
-> allows to process data continuously, yielding a throughput of 10! hits/s
Don't


https://ieeexplore.ieee.org/document/10121151

Benefits of embedded Cluster finding

e Quality of real-time cluster reconstruction as good as CPU algorithm SeS ‘ o _ LHCb Simulation -
2 ") cru

e Raw pixel information dropped and replaced by hit positions j;’ IE [rroa
during readout (saves 15% of b/w) § 1'
107
o  FPGA implementation saves 12% of HLT1 computing power, and g
uses 1/50t of the electrical power [IEEE TNS 70, 6 (2023)] 102
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-> Now established as the default method at LHCb. " , %ﬁ%’é’f’
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o  Side benefits: real-time availability of 10!! hits/s in accessible way
enables further applications (e.g. precision monitoring of beamline)
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-> Now established as the default method at LHCb. " , %ﬁ%’é’f’

202 —0.15 0.1 -0

x cluster - x hit [mm]

o  Side benefits: real-time availability of 10!! hits/s in accessible way
enables further applications (e.g. precision monitoring of beamline)

'‘Local' application: all required data accessible in a single FPGA
Next we discuss a more complex solution involving multiple FPGAs



https://ieeexplore.ieee.org/document/10121151
https://indi.to/sftVf

Retina' Architecture

Detector layers

\ 4 1\1 1\1 Distribution network:

NN

<“— Input from detector over multiple lines

Distribution Network <

o Custom Switch: routes hits only to appropriate cells.

!

Cell:
« o Evaluates presence of primitive in specific region

<«— Primitives are sent to the Event Builder.
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Modular design

<“— Input from detector over multiple lines
Detector Iayers

llll llll

Distribution network:
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Cell:
Cell a— o Evaluates presence of primitive in specific region

<«— Primitives are sent to the Event Builder. 10



Modular design

<— Input from detector over multiple lines
Detector Iayers

1 l l l l l l !
Distribution network:
‘ < o Custom Switch: routes hits only to appropriate cells.
) J o Optical communication: exchanges hits between boards.

Cell:
o Evaluates presence of primitive in specific region

*“— Primitives are sent to the Event Builder. 11



Physical implementation

PClexpress bus
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Physical implementation
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Physical implementation
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The “artificial retina” architecture: what happens inside a cell

t, mapped intersection
for I layer

hits 5 R is close to N (# of layers)
_ (=1 =t1)" only if we have a set of hits
R — E € 20 near the mapped track

e Each cell computes its response (R) as the weighted sum of inputs

o  For tracking, hits closer to the reference track get larger weight (Gaussian in the example)

o Digital analogue of "receptive fields" in vision processing in the natural brain
o Hence the historical name 'retina architecture’
o More specific than a generic 'neural net'
o Calculation must happen is zero-time for the system to work 17



The “artificial retina” architecture: what happens in the cell matrix
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INPUT CLUSTER FIND OUTPUT
all cells in parallel all cells in parallel sequential

+ 3 steps happen simultaneously (pipelined) while input is coming, in order not to stop the flow:
1. All cells are filled in parallel
2. Clusters are found by local negotiations between neighboring cells
3. Output of cluster centers are queued to output

+ Afinal pipeline stage may be added to perform application-dependent processing
18



Hardware demonstrator

A complete Retina demonstrator was installed and tested at the
LHCb TestBed facility. Culmination of a decade-long effort.

Reconstruct a VELO quadrant using 8 PCle-hosted FPGA cards
(Stratix-10, 2.8 MLE). (Takes VELO clusters as input)
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Test on LHCb MC @Run3 luminosity (2x1033 cm-2s-1).
Bit-by-bit comparison with software emulator gives perfect
matching - running uninterruptedly for weeks.
Achieved 20 MHz event rate (LHCb rate ~27 MHz)

Easily on target with optimization and current FPGAs |

No buffering, sub-us latency
Low power consumption 550 W




Detail of the switching network

Topology: 8-nodes full-mesh network.

28 full-duplex optical links at 25.8 Gbps, total bandwidth 1.4 Tb/s.

Open source protocol Intel SuperLite 1l v4

Traffic managed by LUTs - dedicated optimization code for load-balancing

o O O O

Implemented via optical patch panel, allows for easy reconfiguration

20



Results on live LHCDb data

Currently Running parasitically on real LHCb data
during Run 3 physics data taking (at reduced rate)

\%

Online LHCb alignment constant applied on the fly.

Tracks distribution from demonstrator (right)
very similar to HLT2 output (left).
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1/Event Rate [ns]

Online LHCb alignment constant applied on the fly.

Tracks distribution from demonstrator (right)

Results on live LHCDb data

Currently Running parasitically on real LHCb data
during Run 3 physics data taking (at reduced rate)

very similar to HLT2 output (left).
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e  Emulate higher luminosities by event

e Performance LINEAR with occupancy
and size, up to very high lumi
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Currently Running parasitically on real LHCb data 5 |
during Run 3 physics data taking (at reduced rate) 5%

Online LHCb alignment constant applied on the fly. ‘°~4;

Tracks distribution from demonstrator (right)

Results on live LHCDb data

very similar to HLT2 output (left).
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Upstream track

T1 T2 T3
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— Longtrack |

Downstream track

VELO track '

Magnet

e Track segments in the SciFi detector play important role in LHCb
e Currently used as 'seeds' for HLT1 tracking sequence
e Heavy to compute (before GPUs only possible at HLT2)
e Implementation as 2-step retina device (axial layers, then stereo)
e Requires ~100 FPGA boards (new LHCb readout boards)

DWT project: reconstruction of SciFi track primitives
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20|

axial retina >
x-coordinates hits
K:zm—
220 s
200}

'
Y
8888§$§8§§

o)
201
NI T

stereo retina
u/v-coordinates hits

| LHCb Simulation, Unofficial| s

[T
707720 4060 80 100 120 140 160 180 200 220 240 o
0

22



Throughput tests on the actual HLT1 system

366.00 kHz Seeding (without RetinaDWT)

675.39 kHz Seeding (with RetinaDWT Axial)

2227.94 kHz Seeding (with RetinaDWT Axial + Stereo) ,-

139.52 kHz hit1_pp_matching (without RetinaDWT)

171.17 kHz hit1_pp_matching (with RetinaDWT Axial)

LHCb Simulation

186.16 kHz hit1_pp_matching (with RetinaDWT Axial + Stereo) - .
upgrade_DC19_01_MinBiasMD_retinacluster.mdf

T T T T T /l[’ T
0 200 400 600 800 2200

e Effect on Full HLT1 sequence, long tracks matching VELO tracks and T-tracks:

e Execution time: e Replacing seeding with primitives decoding and refitting.
o Total: 7.2 us o Total: 5.4 ys
o Seeding: 1.5 ps o  Primitives decoding and refitting: 0.06 ps

e QOverall HLT1 throughput increased by 33%. Makes room for further HLT1 functionality.

Plan to implement for next LHCb run (Run 4)

23




For more information

o DAQ enhancement TDR submitted by LHCb to the LHCC (not yet public)
e Contains Run 4 proposal for Both the DWT and the new FPGA board of LHCb

o Detailed technical description already available as a LHCb public note

I Il;l h % LH(;bPl(f:gnﬁgtg? !

Enhangenaas

HCb Proposal for FPGA-based tracking in
Dqtq Acq uiSItion the LHCb downstream region

(@) oo
N i

24

(© 2021 CERN for tha benc: of the LHCh collsberation. [CC-BY-10 liconco



https://cds.cern.ch/record/2886891
https://cds.cern.ch/record/2888549?ln=en
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Hits in the VELO detector of LHCb appear as clusters of pixels [see dedicated VELO talk]

Firmware deployed in Run3 in FPGA readout boards to reconstruct clusters on the fly (Arria 10)

e Original plan was to do this during HLT1 reconstruction

A 'complex' primitive: hits in the VELO pixel detector

e Pixels read out as 2*4 arrays (SuperPixels, SP). Clusters found by unpacking them into active 0]10]0

1

0 1

0(0|0

matrices, where each pixel actively checks if it belongs to a pattern. Centroid evaluated by LUT.

e Fast solution, but unmanageable to cover the 40M pixels of the VELO

e Solution: dynamically allocate small matrixes where active pixels are found.
Input data travel along a chain of empty matrices:
o  When a SP hits an empty matrix, it allocates it to its position
o It a SP hits a matrix it belongs to, it fills the matrix at the right position
o  Cluster finding happens in parallel in all matrices

-> allows to process data continuously, yielding a throughput of 10! hits/s [IEEE TNS 70, 6 (2023)]
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https://ieeexplore.ieee.org/document/10121151

e Quality of real-time cluster reconstruction as good as CPU algorithm
Raw pixel information dropped and replaced by hit positions
during readout (saves 15% of b/w)

o  FPGA implementation saves 12% of HLT1 computing power, and
uses 1/50t of the electrical power [IEEE TNS 70, 6 (2023)]

-> Now established as the default method at LHCb.

o

o

o  Side benefits: real-time availability of 10!! hits/s in accessible way
enables further applications

o Example: measurement of beam position vs time exploiting
cylindrical symmetry of hit distribution

Large rate require no track reconstruction (‘trackless')
O(um) precision, continuous monitoring

iny (mm]

mean beam position

Benefits of embedded Cluster finding
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Benefits of embedded Cluster finding

e Quality of real-time cluster reconstruction as good as CPU algorithm SeS ‘ o N ‘L‘I'{'Cﬁ'si‘ﬁl}‘ﬂ‘a'tibﬁ‘ -
2 g @ CPU i 50k min. bias events
e Raw pixel information dropped and replaced by hit positions j;’ 1 /
during readout (saves 15% of b/w) § 1:
107

o  FPGA implementation saves 12% of HLT1 computing power, and g
uses 1/50t of the electrical power [IEEE TNS 70, 6 (2023)] 102

-> Now established as the default method at LHCb.

o Side benefits: real-time availability of 10'! hits/s in accessible way W
enables further applications 102052015

o il

. . -, x cluster - x hit [mm]
o Example: measurement of beam position vs time exploiting

cylindrical symmetry of hit distribution

—— y set position

. yestimator LHCb unofficial
04 Fill 8379 - November 2022

o Large rate require no track reconstruction ('trackless’)

Velo CLOSED

iny (mm]

o O(um) precision, continuous monitoring

mean beam position

o o
o R % Ao

'‘Local' application: all required data accessible in a single FPGA Timesam (i
Next we discuss a more complex solution involving multiple FPGAs
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Emulation study of DWT performance

Studies performed with realistic device Emulator, running on official LHCb MC productions.
Tracking quality of primitives is at a level close to HLT1 - will be refined to tracks in HLT1 processing
e Efficiencies ~90% , Ghost rates ~15%

R(cell)

= Fr T T ] Track type MinBias | D’ — K3ntn~ | BY — ¢¢
= (.8 DWT event display 10 Long, p > 3GaV/e 85 (86) 83 (84) 84 (35)
0.6 F Long, p > 5GeV/c 90 (91) 89 (90) 89 (89)
04E 3 Long from B not e*, p > 3 GeV/e - - 88 (87)
E Long from B not e*, p > 5GeV/c - - 90 (90)
02F Down, p > 3GeV/c 84 (85) 83 (84) 83 (84)
oE 6 Down, p > 5GeV/ec 89 (91) 88 (89) 88 (89)
) - Down from strange not e*, p > 3 GeV/c - 83 (83) -
0. = 4 Down from strange not e*, p > 5GeV/c 88 (88)
—0.4F Down from strange not long not e*, p > 3 GeV/c - 83 (83) -
—0.6 f_ o Generated track > Down from strange not long not e, p > 5GeV/c - 88 (89) -
_08E * Reconstructed track ghost rate 16 (10) 17 (12) 17 (13)
AE | ghost rate / (1 - ghost rate) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1)

05 0 05
Par. space



DWT tracking performance

Fiducial requirements: p; > 200 MeV/c; 2<n<5.

Event-averaged values in brackets

Track type MinBias | DY — Kintn~ | BY — ¢¢
Long, p > 3GeV/c 85 (86) 83 (84) 84 (85)
Long, p > 5GeV/c 90 (91) 89 (90) 89 (89)
Long from B not e=, p > 3GeV/c - - 88 (87)
Long from B not e*, p > 5GeV/c - - 90 (90)
Down, p > 3GeV/c 84 (85) 83 (84) 83 (84)
Down, p > 5GeV/c 89 (91) 88 (89) 88 (89)
Down from strange not e, p > 3 GeV/c - 83 (83) -
Down from strange not e*, p > 5GeV/c - 88 (88) :
Down from strange not long not e*, p > 3GeV/c - 83 (83) -
Down from strange not long not e*, p > 5GeV/c - 88 (89) -
ghost rate 16 (10) 17 (12) 17 (13)
ghost rate / (1 - ghost rate) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1)

Performance similar to current HLT1 already at the primitive level.
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Throughput tests on the actual HLT1 system

366.00 kHz Seeding (without RetinaDWT)

675.39 kHz Seeding (with RetinaDWT Axial)

2227.94 kHz Seeding (with RetinaDWT Axial + Stereo) ,-

139.52 kHz hit1_pp_matching (without RetinaDWT)

171.17 kHz hit1_pp_matching (with RetinaDWT Axial)

LHCb Simulation

186.16 kHz hit1_pp_matching (with RetinaDWT Axial + Stereo) - .
upgrade_DC19_01_MinBiasMD_retinacluster.mdf

T T T T T /l[’ T
0 200 400 600 800 2200

e T-track seeding (computational heavy) x6 speedup with primitive-based reconstruction

e Effect on Full HLT1 sequence, long tracks matching VELO tracks and T-tracks:

e Execution time: e Replacing seeding with primitives decoding and refitting.
o Total: 7.2 us o Total: 5.4 ys
o Seeding: 1.5 ps o  Primitives decoding and refitting: 0.06 ps

e Overall HLT1 throughput increased by 33%. Makes room for further HLT1 functionalities.

Plan to implement for next LHCb run (Run 4) 31




