Characterization of hybrid photodetector prototype based on MCPs and the Timepix4 ASIC

J.A. Alozy^a, R. Ballabriga^a, N.V. Biesuz^b, R. Bolzonella^{b,c}, M. Campbell^a, V. Cavallini^{b,c}, A. Cotta Ramusino^b, <u>M. Fiorini^{b,c}</u>, E. Franzoso^b, M. Guarise^{b,c}, X. Llopart^a, G. Romolini^{b,c}, A. Saputi^b

^a CERN ^b INFN Ferrara ^c University of Ferrara

16th Pisa Meeting on Advanced Detectors La Biodola, May 27th 2024

Hybrid MCP-PMT concept

- Entrance window + photocathode
- Microchannel plate stack
 - Timepix4 ASIC as pixelated anode
 - Electron cloud (pixels cluster)
 - $55\mu m \times 55\mu m$ pitch
 - 0.23 M pixels measuring arrival time and duration of input signals
 - □ 7 cm² active area
 - Up to 2.5 Ghits/s
 - Local signal processing

JINST 13 C12005 2018

Detector geometry

- Shortest photocathode-to-MCP distance
 - Preserve impact position information
- Optimized MCP-to-anode distance for optimal cluster dimension
 - Improvement in both position and timing resolutions (centroiding)
- Ceramic carrier transmits electrical signals to and from the Timepix4 through a series of of vias and pins
 - □ Heat sink for Timepix4 (~5 W thermal power)

Pixelated anode: Timepix4 ASIC

- Timepix4 ASIC in 65 nm CMOS (TSMC) silicon pixel technology
 - Developed and produced by the Medipix4 Collaboration for hybrid pixel detectors
- Charge sensitive amplifier, single threshold discriminator and TDC based on Voltage Controlled Oscillator
 - 4-side buttable (TSV)
 - Data-driven and frame-based read-out

JINST 17 C01044 2022

Technology			CMOS 65 nm		
Pixe	el Size 55 μm × 55 μm				
Pixel arrangement			4-side buttable 512×448 (0.23 Mpixels)		
Sen	sitive area		6.94 cm ² (2.82 cm \times 2.46 cm)		
Read-out Modes	Data driven	Mode	TOT and TOA		
		Event Packet	64-bit		
		Max rate	358 Mhits/cm ² /s		
TD	TDC bin size		195 ps		
Rea	adout bandwidth		≤163.84 Gbps (16× @10.24 Gbps		
Equ	ivalent noise c	ent noise charge 50-70 e-			
Target global minimum threshold			<500 e-		

Timepix4 data-driven read-out

- Zero-suppressed continuous data-driven
 - Output bandwidth from 40 Mbps (2.6 Hz/pixel) to 160 Gbps (10.8 KHz/pixel)
- 4 external inputs to synchronize/align external signals with data

		SPEC: Packet specifications ToA/ToT					
	Name	Width	MSB	LSB	Bits		
	Тор	1	63	63	[63:63]	1)	
	EoC	8	62	55	[62:55]		Address: 18 bits
	SP	6	54	49	[54:49]		
	Pixel	3	48	46	[48:46]	2	
	ToA	16	45	30	[45:30]	\square	
	ufToA_start	4	29	26	[29:26]	}	Time, 20 hite
	ufToA_stop	4	25	22	[25:22]	11	Time. 29 Dits
04.1.1.	fToA_rise	5	21	17	[21:17]	רן	
: 21 bits	fToA_fall	5	16	12	[16:12]		
	тот	11	11	1	[11:1]		
	Pileup	1	0	0	[0:0]		

Timepix4 hit data

- Measure Time-of-Arrival (ToA=t₁) and Time-over-Threshold (ToT=t₂-t₁)
 TDC bin size: 195 ps (56 ps r.m.s. resolution per pixel)
- Electron cloud spread over a number of pixels \rightarrow cluster
- Use ToT information (proportional to the charge in a pixel) to:
 - Correct for time-walk effect in every pixel
 - □ Improve **position resolution** by centroid algorithm
 - Go from 55μ m/ $\sqrt{12}$ ~16 μ m down to 5-10 μ m r.m.s. (MCP channels pitch)
 - □ Improve **timing resolution** by multiple sampling
 - Many timing measurements for the same photon → few 10s ps r.m.s.

Ceramic carrier

- Electrical design critical due to 10 Gbps lines
- Signal integrity simulations
 - PGA not limiting factor per se
 - Requires careful pin placement
- Main contributions to signal degradation
 - Parasitic capacitance
 - Aluminium oxide multilayer PCB
 - Pads (wire-bond and pin pads)
- Produced by Kyocera
 - Extensive tests performed
 - Metrology, vacuum leak, thermal
 - Electrical characterization including integration with Timepix4

Electronics and DAQ

On-detector electronics

- Timepix4 ASIC in the tube; regulators; Electro-optical transceivers link the ASIC to an FPGA-based board for the exchange of configuration (slow control) and the collection of event data; etc.
- Off-detector electronics
 - FPGA far from detector
- The FPGA
 performs serial
 decoding and
 sends the data
 to a PC for data
 analysis and
 storage using
 fast serial data
 links

Electronics and DAQ

On-detector electronics

 Timepix4 ASIC in the tube; regulators; Electro-optical transceivers link the ASIC to an FPGA-based board for the exchange of configuration (slow control) and the collection of event data; etc.

Timing resolution measurements (1)

- Using SPIDR4 control board (Nikhef)
- Timepix4_v2 bonded to a 100 μm n-on-p Si detector
 - Metallization with holes pattern
 - Thanks to V. Coco (CERN), M. Van Beuzekom (Nikhef) et al. (LHCb Velo)

Timing resolution measurements (2)

- Waveform generator: input signal to digital pixels + laser trigger
- Picosecond diode laser: 1060 nm + variable attenuator
- Linear translation stages: 3D position regulation with μm precision

Spidr4 control board

Massimiliano Fiorini (Ferrara)

Timing resolution measurements (3)

- Laser focused using microcollimator:
 - $\Box \sigma = 1.4 \text{ pixel} = 77 \ \mu \text{m}$
- Laser spot in fixed position for all presented measurements

arXiv:2404.15499

Timing resolution measurements (4)

- VCO of different pixels oscillate with different frequencies
- Finer ToA bins generated with different width
- ToA and ToT measurements heavily affected by this effect
- Internal test pulse tool exploited to calibrate VCO frequencies for the whole matrix (~28.7k VCO)

Single pixel resolution (1)

- Single pixel timing resolution
- Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

Single pixel resolution (2)

- Single pixel timing resolution
- Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

arXiv:2404.15499

Single pixel resolution (3)

- Single pixel timing resolution
- Distribution of timing resolution as a function of injected charge
- For the pixel [305,144], where the laser is focused, the standard deviation saturates at 128±1 ps r.m.s.
- Subtracting the contribution of the reference TDC (72 ps r.m.s.), a resolution of 106±1 ps r.m.s. is obtained for charge >40 ke⁻

Cluster resolution (1)

- For each cluster we compute:
 - Weighted average of ToA using charge as weights
 - Total cluster charge computed
- Timing resolution dependence on cluster charge:
 - best result: $\sigma_{ToADiffAvg} = 79 \pm 1 \text{ ps r.m.s.}$
- Timing resolution after subtracting reference TDC contribution:
 - $\Box \quad \sigma_{\text{ToAAvg}} = 33 \pm 3 \text{ ps r.m.s.}$

Cluster resolution (2)

- Offline "variation of cluster size": consider shells of pixels within the same physical cluster
 - Large improvement in the resolution from 1-pixel clusters to 5-pixels clusters
 - Small or negligible improvement increasing further the cluster size
- This result allows the definition of optimal cluster size for MCP

Prototype vacuum tube

- Prototype vacuum tubes produced by Hamamatsu Photonics
 - First one delivered a couple of weeks ago
- Main characteristics:
 - Multi-alkali S20 photocathode
 - Peak QE >30% at 380 nm for the first produced sample
 - 6 μm MCP channel diameter (7.5 μm pitch)
- Different variants being produced for complete device characterization
 - □ 2-MCP stack and 3-MCP stack
 - □ 1d/2d/3d end-spoiling

Vacuum tube: first measurements

- Preliminary results on first produced detector (2-MCP stack with 2d end-spoiling)
- Data-driven acquisitions in dark conditions (gain, DCR)
- Detector calibrations + Acquisitions of oscilloscope signals from "analogue" pads on the ceramic carrier
- Timing measurements with picosecond laser
 - Time-walk correction
 - Single-pixel timing resolution (explored low-charge range)

Outlook

- A "hybrid" MCP-PMT is being produced
 - □ Funded by European Research Council (G.A. No. 819627)
 - Demonstrator based on existing full-scale ASIC (Timepix4 developed by Medipix4 Collaboration for hybrid pixel detectors)
 - Complete integration of sensor and electronics
 - On-detector signal processing, digitization and data transmission with large number of active channels (~230 k pixels), with limited number of external interconnections (~200)
 - Goal: full exploitation of both timing and position resolution of MCP
- Future improvements for use in HEP harsh environments
 - Radiation hardness
 - Use rad-hard-by-design ASIC (plus rad-hard serializers)
 - High-rate capability and detector lifetime
 - Improve current MCP technology
 - Timing resolution
 - Use ASIC with smaller TDC bin size and lower front-end jitter

The DRD4 Collaboration: R&D on photon detectors and PID techniques

Massimiliano Fiorini (INFN and University of Ferrara)

on behalf of the DRD4 Collaboration

16th Pisa Meeting on Advanced Detectors La Biodola, May 27th 2024

DRD4 organization

- DRD4: international Collaboration with CERN as host laboratory
 Approved by the CERN Research Board in December 2023
- Main goal: bundle and boost R&D activities in photodetector technology and Particle Identification (PID) techniques for future HEP experiments and facilities
- To be more specific, DRD4 covers the following topics:
 - Single-photon sensitive photodetectors (vacuum, solid state, hybrid)
 - PID techniques (Cherenkov based, Time of Flight)
 - Scintillating Fiber (SciFi) tracking
 - Transition Radiation (TR) using solid state X-ray detectors
- DRD4 structure initially defined in the <u>Proposal document</u>
 - 6 Working Groups (WGs) reflecting the main areas of R&D
 - Scientific forums for discussion: no agreed tasks, no committed resources
 - Facilitate exchange of information, know-how, samples, infrastructure, etc.
 - 5 Work Packages (WPs) reflecting the main ECFA roadmap themes and goals
 - Run like projects: divided in tasks, with agreed goals, milestones, deliverables, and are jointly funded by the resources of the participants

DRD4 activities

- 74 institutes joined DRD4 at the time of Proposal
 - 2 institutes recently admitted (more in the pipeline)
 - 20 nationalities
 - Many small groups, many with no prior experience in large R&D collaborations
 - Large effort to constitute a collaborative effort amongst a research community that has not traditionally worked together in the recent past
- DRD4 activities are ramping up: many scientific and technological discussions ongoing
 - See <u>Indico</u> pages for more details
 - These meetings allow building our community, enabling discussion of activities and the spread of information
- Next <u>DRD4 Collaboration Meeting at CERN</u> on 17-20 June 2024

DRD4 collaboration

- New groups are welcome to join DRD4
 - □ For more information: <u>https://drd4.web.cern.ch</u>
 - If interested, please <u>contact us</u> (or simply <u>subscribe</u> to the "drd4-interested" list to be informed about ongoing activities)

Group photo at the DRD4 Constitutional meeting (CERN, January 2024)

ToT Vs Q calibration

Validation with radioactive sources (¹³⁷Cs and ²⁴¹Am superimposed spectra)

ToT Vs Q calibration

Validation with radioactive sources (¹³⁷Cs and ²⁴¹Am superimposed spectra)

Reference signal resolution

- Periodic pulse (externally generated, not synchronous to the 40 MHz Timepix4 reference clock) sent to the pixel through the digital pixels
 Difference between the ToA of each pulse with the previous
- Result of 72 ps r.m.s. larger than 56 ps r.m.s. (contribution given by the generation of the external test pulses and their distribution to Timepix4)

arXiv:2404.15499

Software

- Dedicated software developed
- C++ based
 - Low-level
 - Object-oriented
- Readout and Control in unique CLI
- Read and Write register functions
- Application Programming Interfaces for Timepix4
- Packets decoder
- Open source

MCP-PMT limitations

- MCP-PMT lifetime limited by the integrated anode charge, which leads to a strong QE reduction
 - From 0.2 C/cm² to >30 C/cm² in recent years thanks to ALD
- With the expected photon hit rate (~10 MHz/mm²), assuming a 10⁴ gain (very conservative), and an operation of 10 years with 25% duty cycle we have:
 - Total IAC ~ 120 C/cm^2
 - $\hfill Anode current density ~2 <math display="inline">\mu A/cm^2$
- ALD coating is based on the deposition of resistive and/or secondary emissive layers (could tune MCP properties)
 - Reported adverse effects on saturation current on some model with ALD
- Strong R&D to find the best "recipe" is needed

D. Miehling et al., NIM A 1049 (2023) 168047

Time resolution contributions

 $\sigma_{time} = TTS \oplus \sigma_{front-end} \oplus \sigma_{TDC}$

Contributions:

- □ TTS (Transit Time Spread) of electrons: 25 ps FWHM
- □ Front-end: <30 ps for input charge >10⁴ e⁻
- TDC contribution: 56 ps (195 ps bin size $/\sqrt{12}$)
- Time resolution for 1 pixel: 70 ps

PicoPix project

- PicoPix is intended to be a "realistic" demonstrator chip for a future upgrade of the LHCb Velo project (Velopix2)
 - Main requirement is time resolution < 30 ps rms
 - Other very challenging requirements (pixel size, radiation hardness, power, bandwidth, etc.)
- There is a limit on time resolution that are achievable for small pixels with limited power
- High-speed links in 28 nm (CERN EP R&D WP6)
 □ lpGBT (10 Gbps) → DART28 (>26 Gbps)

X. Llopart (CERN)

Velopix2

Initial requirements on Velopix2 from LHCb

	Requirement	scenario S_A	scenario S_B
	Pixel pitch [µm]	\leq 55	≤ 42
	Matrix size	256×256	335×335
Priority	Time resolution RMS [ps]	≤ 30	≤ 30
	Loss of hits [%]	≤ 1	≤ 1
	TID lifetime [MGy]	> 24	> 3
	ToT resolution/range [bits]	6	8
	Max latency, BXID range [bits]	9	9
	Power budget $[W/cm^2]$	1.5	1.5
	Power per pixel [µW]	23	14
	Threshold level [e ⁻]	≤ 500	≤ 500
	Pixel rate hottest pixel [kHz]	> 350	> 40
	Max discharge time [ns]	< 29	< 250
	Bandwidth per ASIC of 2 cm ² [Gb/s]	> 250	> 94

X. Llopart (CERN)

Challenging!

doable

Timepix4 noise

• Equivalent Noise Charge (ENC) for v0, v1 and v2

Analog (static) power supply distrib.

	Total I (chip)		2 WB	3 TSV
Nominal Analog Power	~2200 m 4	V _{drop} [VDDA-GNDA]	19.6 mV	6.9 mV
[10 µA/pixel]	2300 IIIA	Imax pad	60 mA	57 mA
Low Analog Power	~230 mA	V _{drop} [VDDA-GNDA]	1.96mV	0.69mV
[1 µA/pixel]		Imax pad	6 mA	5.7 mA

3 TSV

2 WireBonds X. Llopart (CERN)

Digital (dinamic) power consuption

- Timepix4 power consumption (~5 W)
- Goal: stable operation with 20 °C inside the vacuum tube
 - Cold "finger" in thermal contact to ceramic carrier

PM2024

Timepix4 ASIC versions

- 65 nm CMOS (TSMC)
- ASIC productions:
 - □ Timepix4_v0 (Q1 2020)
 - □ Timepix4_v1 (Q4 2020)
 - □ Timepix4_v2 (Q4 2021)
 - □ Timepix4_v3 (Q1 2023)

Timepix4 submissions

X. Llopart (CERN)

Timepix4 equalization

X. Llopart (CERN)

Timing with test pulse measurements

- Timepix4v2
- Using DDLL in bypass mode:
 - Controlled delay step of ~5.1ps
- Test on first 4 rows of pixels of both edges
- Allows for precise UFTOA measurement

K. Heijhoff (Nikhef)

X. Llopart (CERN)

PM2024