16TH PISA MEETING ON ADVANCED DETECTORS La Biodola, Isola d'Elba, May 26-June 1, 2024

Scintillating sampling ECAL technology for the LHCb PicoCal

S. Kholodenko (INFN Pisa) on behalf of the LHCb ECAL Upgrade II R&D group

LHCb experiment

LHCb Detector performance: arXiv:1412.6352;

29th of May 2024

LHCb Upgrade 2 motivation

- A wide range of $b \rightarrow s \ l^+l^-$ and $b \rightarrow d \ l^+l^-$ transitions (many not accessible in the current configuration);
- Measurements of the CP-violating phases γ and ϕ_s with a precision of 0.4° and 3 mrad, respectively;
- Precise Measurement of R = B(B⁰ $\rightarrow \mu^{+}\mu^{-})/B(B_{s}^{0} \rightarrow \mu^{+}\mu^{-});$
- LFU (lepton flavour universality tests), exploiting the full range of b-hadrons;
- CP-violation studies in charm with 10⁻⁵ precision.

For more details please refer to the Andreas's talk

29th of May 2024

Current ECAL

Shashlik technology:

4 mm scintillator tiles,

2 mm thick lead plates.

Modules:

XY dimensions: 121.2 x 121.2 mm², 66 layers of Pb + 67 scintillator tiles. Ø1.2 mm Y11 (250) WLS-fibres.

Three zones in granularity Inner (9 cells/module), Middle (4) and Outer (1)

Total:

3312 modules, 6016 cells, 7.7 x 6.3 m2.

Readout PMT R7899-20; HV: individual Cockcroft-Walton circuit

Light yield: ~ 3000 ph.e. / GeV

Energy resolution: $\frac{\sigma_E}{E} = \frac{(8.2 \div 9.4)\%}{\sqrt{E}} \oplus 0.9\%$

29th of May 2024

Pisa Meeting 2024: Scintillating sampling ECAL technology for the LHCb PicoCal

4/21

ECAL performance extrapolated to the end of Run 4

Light output degradation after 4 years of Run4 (60/fb) - 1 = no degradation

Degradation of the calorimeter performance due to radiation damage in particular in the innermost section of the ECAL.

The degradation of light output at the end of Run 4 for the current ECAL configuration

(assuming 32 innermost modules would be replaced by spares during LS3).

The reduced light output would lead to a significant degradation in the ECAL energy resolution.

ECAL Upgrade 2 requirements

Accumulated radiation dose [Gy] after 300 fb-1

Requirements for the Upgrade II (operation at up to $1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$):

- Sustain radiation doses up to 1 MGy and $\leq 6 \times 10^{15}$ 1 MeV neq / cm² in the centre
- Keep current energy resolution of $\sigma(E)/E \approx 10\%/{\it JE}$ 1%
- Pile-up mitigation crucial
 - \rightarrow Timing capabilities with O(10) ps precision
 - \rightarrow Increased granularity in the central region (denser material)
- Better time resolution, less impact of radiation damage, more information for event reconstruction and PID from longitudinal segmentation

LHCb ECAL upgrade strategy

Run 3 in 2022-2025:

Run with unmodified ECAL Shashlik modules at L = 2 x 10^{33} cm⁻²s⁻¹ (new 40 MHz readout)

LS3 enhancement in 2026-2028 (TDR approved):

Replacing inner region with Spaghetti type modules (SpaCal) (2x2 and 3x3 cm² cells) + rebuilt ECAL regions to rhombic shape to improve performance at L = $2(4) \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ \rightarrow 32 SpaCal-W & 144 SpaCal-Pb modules with plastic fibres compliant with Upgrade II conditions

LS4 Upgrade II in 2033/2034:

Introduce double-section radiation hard SpaCal (1.5x1.5 & 3x3 cm2 cells) and improve timing of Shashlik modules for a luminosity of up to L = $1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

 \rightarrow Innermost SpaCal-W modules equipped with crystal fibres

 \rightarrow Include timing information and double-sided readout to full ECAL for pile-up mitigation

29th of May 2024

Run 4 occupancy

Simulated occupancy per cell assuming a luminosity of 2×10^{33} cm⁻² s⁻¹ in the current ECAL (left), and in the proposed configuration to be installed during the LS3 (right).

Note: SpaCal modules are inclined by 3+3 degree

8/21

Run5/6 baseline configuration

с. н	
<u>Cell size:</u>	Modu
1.5 x 1.5 cm2	40 Sp
3 x 3 cm2	136 S
4 x 4 cm2	272 S
	+ 176
6 x 6 cm2	448 re
	+ 896
12 x 12 cm2	1344

<u>Modules:</u> 40 SpaCal-W modules 136 SpaCal-Pb modules 272 SpaCal-Pb modules + 176 refurbished Shashlik modules 448 refurbished Shashlik modules + 896 rebuilt Shashlik modules 1344 refurbished Shashlik modules

Double-sided readout: 30'976 electronics channels

Refurbished Shashlik modules: new fast WLS fibres for better timing

Rebuilt Shashlik modules:

new scintillator tiles for smaller cell size new fast WLS fibres for better timing

Module description

SpaCal modules

Installation		LS3	LS4	LS3/LS4
Aborber		3d-printed W		Lead (Pb)
Fibre type		Polystyrene	GAGG	Polystyrene
Cell size	[mm ²]	20 x 20	15 x 15	30 x 30
Molière radius	[mm]	18	14.6	~30
Radiation length [mm]		7.2	6.2	~10
Segmentation	[mm]	190	45 + 105	290 / 80+210

Three module types:

Polystyrene fibres replaced by GAGG in W absorber during LS4 Long.segmentation during LS4 Absorbers produced for LS3 fully reusable during LS4

29th of May 2024

SpaCal-W + crystal fibres

- SpaCal prototype module with W absorber and garnet crystal fibres:
- Pure tungsten absorber
- 9 cells of 1.5x1.5 cm2 (RM ≈ 1.45 cm)
- 7+18 X0 long segm.
- Reflective mirror between sections

Crystal garnets from several producers:

- Crytur YAG
- Fomos GAGG
- ILM GAGG
- C&A GFAG
- \rightarrow Characterised with laboratory measurements

Photon detectors used:

- Hamamatsu R12421 for energy resolution
- Hamamatsu R7600U-20 for time resolution

NIM A 1000, 165231 (2021)

SpaCal-W + crystal fibres (2)

Time Resolution C&A GFAG

• ~20 ps time resolution at 5 GeV for GFAG

Energy Resolution - 3°+3°

- Better energy resolution with larger incidence angles
- Data up to 5 GeV give (10.2 \pm 0.1)% sampling term and
- 1-2% constant term for $\theta X = \theta Y = 3^{\circ}$

NIM A 1045, 167629 (2022)

3d printed W

- 3D printing using pure tungsten powder found to be a scalable technology for absorber production
- Smooth surface mandatory to avoid damaging the fibres during module assembly
 - \rightarrow average roughness Ra = 5 μ m achieved
- R&D campaign with EOS (Germany):
 - \rightarrow First 15x15 mm² cells with up to 10 cm length
 - \rightarrow 45x45 mm² pieces
 - \rightarrow Recently 121x121 mm² pieces produced
- Module-size pieces recently produced by LaserAdd (China):
 - \rightarrow Two 121x121 mm² pieces in 2023
 - \rightarrow Absorber pieces for module-size prototype with crystal fibres expected very soon

29th of May 2024

SpaCal-W + Polystyrene fibres (LS3 Enhancement)

SpaCal with polystyrene fibres and lead absorber:

- 120x120x190 mm³ 3D-printed tungsten absorber from EOS (Germany) filled with single-cladded organic scintillating fibres (1x1 mm², Kuraray SCSF-78)
- Single-sided readout on the back side
- Test beams at DESY and CERN SPS in 2023

Energy resolution (DESY & SPS, R14755U-100)

SpaCal-W + crystal fibres: prototype 2024

- 3 pieces of 3D-printed tungsten absorber of 121x121x50 mm³ produced by LaserAdd in China
- Double-sided readout in view of Upgrade II
- 4x4 cells: 1296 GAGG crystal fibres from SIPAT
- Further cells will be equipped with fibres from other producers later
- Assembly at CERN expected in summer 2024

71x71 square holes

29th of May 2024

SpaCal-Pb + Polystyrene. First prototype

Module details:

9 cells of 30x30 mm2 (RM ~ 3 cm) 80+210 mm long (7+18 X0) Reflective mirror between sections Kuraray SCSF-78 round fibres Ø = 1.0 mm Light guides 100 mm long Grooved lead sheets

Incidence angles: $\theta_{\chi} = \theta_{\gamma} = 3^{\circ}$ double-sided readout PMT in direct contact Energy resolution: PMT = R7899-20 (current ECAL)

<u>Time resolution:</u> PMT = R11187

29th of May 2024

SpaCal-Pb. Single-cell prototypes with casting technique

Base material: Babbitt BK2

(~97% Pb + 1.5% Sn, 0.3%Ca, 0.2%Na, ...)

<u>∞ 2.1 mm capillary tubes:</u> AISI 321 (12X18H10T)
(Cr 17,0%-19,0%, Ni 9,0% ÷ 11,0%, Fe 70%, Mn ≤ 2,0%, Si ≤ 0,8%, ...)

Fibres: Ø 2 mm Kuraray SCSF-78

Capila

Fibe

SpaCal-Pb + Polystyrene fibres

- Lead absorber produced using low-pressure casting by MTH & ICM in Germany
- Prototype with 90x90 $\rm mm^2$ active area equipped with round SCSF-78 scintillating fibres of 2 mm diameter tested at DESY in December 2023
- Next prototype with 121x121 mm² active area and using SCSF-3HF scintillating fibres of 1.5 mm diameter in preparation, targeting test beam in June 2024 at CERN

29th of May 2024

Pisa Meeting 2024: Scintillating sampling ECAL technology for the LHCb PicoCal

19/21

Measurement, DESY, 2 mm fibres

0.11

0.09

 $\frac{10\%}{\sqrt{E}} \oplus 1\%$

→ Energy resolution

3°+3° - Measurement
3°+3° - Simulation

Shashlik: R&D towards Upgrade 2

- Current LHCb Shashlik modules have good time properties, further improvement could be by
 - PMTs with smaller transit time spread (e.g. R7600-U20)
 - Replacing WLS fibres:
 - Y11 (7 ns decay time) \rightarrow currently used in ECAL
 - YS2 (3 ns decay time)
 - YS4 (1.1 ns decay time)
- Measurements at DESY and SPS with current (R7899-20) and faster (R7600-20) PMT, single-sided readout, $\theta_X = \theta_Y = 3^\circ$

ECAL outer module (1-cell shashlik, 121x121 mm²)

- The innermost 176 modules of the LHCb ECAL need to be replaced during LS3 due to radiation damage
 - \rightarrow SpaCal technology with W and Pb absorbers meets all requirements for this region
 - \rightarrow TDR recently approved!
- The Upgrade II in LS4 introduces picosecond-level timing capabilities and more demanding radiation hardness requirements
 - \rightarrow Better than 20 ps achieved with Shashlik and SpaCal technology at high energy
 - \rightarrow Crystal fibres in the central region
- Comprehensive R&D ongoing:
 - \rightarrow Test beam measurements with prototypes
 - \rightarrow Detailed Monte Carlo simulations
 - \rightarrow Study of novel absorber production techniques
 - \rightarrow Study of suitable PMTs and development of readout electronics
 - \rightarrow Investigation of new radiation-hard and fast scintillators

Thank you for your attention! Many thanks to the organizers for creating such a wonderful conference!

Supplementary slides

29th of May 2024

Inclination of the SpaCal region

29th of May 2024

Inclination of the SpaCal region (back view)

29th of May 2024

3D-printed W load test

Pic03 – cross region. Through-wall microcrack and pores are noticed

Pic04 – edge region. Through-wall microcrack and pores are noticed Original magnification ×100

Pic06 – cross region, detailed view of a microcrack. Pores are visible Original magnification ×200

microcrack. Pic07 – cross region, detailed view of the built microstructure. Pores are visible Original magnification ×500 Figure 3. Micrographs.

29th of May 2024

Beamtests: CERN H4 / H8 and DESY T24

CERN H4: electrons: E = 20 – 300 GeV **DESY T24:** electrons with E = 1 – 5.8 GeV **CERN H8:** muons and hadrons (p = 150 GeV/c)

First single-cell prototype

produced in MISIS in 2021

Base material Garth's typographic alloy: Pb 84% - Sb 12% - 4% Sn

Extractable rods

 \Rightarrow holes \emptyset 2.2 mm to host \emptyset 2 mm scintillating fibres

Single-cell object was tested for time resolution. Result was quite optimistic

But there was an issue found with the material

 \Rightarrow activation of the antimony makes usage of Garth's typographic alloy impossible

+ Holes after extracting steel rods were way too large (air between absorber and fibers)

29th of May 2024

Second single-cell prototype

produced in MISIS in 2022

Base material: Babbitt BK2

(~97% Pb + 1.5% Sn, 0.3%Ca, 0.2%Na, ...)

<u>∅ 2mm capillary tubes:</u> AISI 321 (12X18H10T)

(Cr 17,0%-19,0%, Ni 9,0% ÷ 11,0%, Fe 70%, Mn \leq 2,0%, Si \leq 0,8%, ...)

29th of May 2024

Pisa Meeting 2024: Scintillating sampling ECAL technology for the LHCb PicoCal

29/21

Assembly: SpaCal-Pb + Polystyrene fibres

29th of May 2024

Assembly: SpaCal-W + Polystyrene fibres

29th of May 2024

Hollow light-guides

Lightguide geometry determined by the PMT + cell size (requirement - uniform response over the surface. Non-uniformities contributes to the constant term of energy resolution)

Different options under study:

- R11176 (single-cell suitable for SpaCal-Pb)
- R7600-M4 (similar dimensions multi-anode pmt, SpaCal-W)
- R9880 (small round PMT)

29th of May 2024