Design and perspectives of the CMS Level-1 trigger Data Scouting system

Rocco Ardino^{1,2,3,*}, C. Deldicque¹, M. Dobson¹, D. Gigi¹, S. Giorgetti^{2,3}, T. James¹, G. Lazzari Miotto¹, E. Meschi¹, M. Migliorini^{2,3}, G. Petrucciani¹, D. Rabady¹, A. Racz¹, H. Sakulin¹, P. Zejdl¹ for the CMS collaboration

¹CERN, Esplanade des Particules 1, Meyrin, 1211, Switzerland
²Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, I-35131 Padova, Italy
³INFN Padova, Via Francesco Marzolo, 8, 35131 Padova, Italy
*Contact person, rocco.ardino@cern.ch

1. Motivation

Events discarded by CMS trigger are LOST FOREVER

- \bullet Level-1 discards ${\sim}99.75\%$ of events
- \bullet Only ${\sim}0.0025\%$ of collisions are saved
- Triggering unexpected physics not always efficient!
- Some interesting signatures too frequent for L1 budget
- $\bullet \Rightarrow$ Uncovered phase-space regions for constraints on BR/couplings

Scouting CONfiguration Endpoint (SCONE)

- Interacting with CMS Run Control and Monitoring System
- Handle board reset/configure/start/stop, monitor metrics

2. L1T Data Scouting demonstrator for Run-3

Real-time analysis using L1 trigger objects

- FPGA: concentrate Global Muon and Calorimeter Trigger objects, Barrel muon track segments, Global trigger decision bits
- Buffer units: receive 100 GbE links and basic processing
- Processing units: event building and online selections

5. DAQ software and Online processing

Intel TBB-based DAQ software (SCDAQ) running on Buffer units

• Every TCP stream injected into a "pipeline" unit, decoding input packets, applying basic processing and writing raw data files

Orbit builder and Online selections on Processing units

- Merge data from all scouting streams and build event with LHC orbit as unit \Rightarrow Possible to look at correlations across different BXs in orbit
- Produce a prescaled "Zero-Bias" stream (keep 1 orbit every N) ...
- ... and an unprescaled "Selection" stream (BXs with certain signature)
- Move data to Lustre, which has link to CMS Tier-0
- Data available for analysis via CMS Data Aggregation System

6. Public results and Outlook

System demonstrated during LHC Run-3 with validation studies

3. Scouting FPGA firmware design

VCU128 scouting boards

Mezzanine

QSFPs

GMT

scouting pipeline

(1xTCP)

1xHBM

DAQ unit

Board

QSFPs

in

BMTF

scouting

pipeline

(12×TCP)

12xHBM

out

0

DAQ unit

out

Q

TCP merger TCP merger TCP merger

DAQ unit

out

 \bigcirc

in

- \bullet Similar to 1/2 DAQ-800 CMS Phase-2 DAQ read out board
- XCVU37P FPGA with 8 GB of HBM
- 10 QSFP slots for input/output

Flexible firmware implementation

- "Scouting pipeline" for inputs alignment and preprocessing
- HBM big temporary buffer before TCP/IP logic
- TCP streams merged into DAQ units (100 GbE)
- Machine Learning algos in scouting pipeline
- Deploy neural network inference applications on FPGA using hls4ml

- Understanding L1 objects and BX occupancy/multiplicity studies
- \bullet Standard Model candles like $Z{\rightarrow}\mu\mu,$ $Z{\rightarrow}ee$ clearly visible at L1
- L1 trigger monitoring at the full BX collision rate

Plan to perform physics measurement already with Run-3 data

 \bullet Di-jet studies at low invariant mass $m_{jj} < 400~GeV$

Fully exploit potential of L1T Data Scouting during CMS Phase-2

• Phase-2 L1 objects close to offline level resolution!

16th Pisa Meeting on Advanced Detectors, 26 May - 1 June 2024, La Biodola - Isola d'Elba (Italy)