

Lightweight Thermal Management Strategies for the Silicon Detectors of CBM at FAIR

<u>Franz Matejcek^{1†}</u> and Kshitij Agarwal² for the CBM Collaboration

¹Goethe-Universität Frankfurt am Main (Germany), ²Eberhard Karls Universität Tübingen (Germany) [†]matejcek@physik.uni-frankfurt.de

CBM-FAIR & Its Silicon-Based Inner Tracker

Fixed-target heavy-ion collision experiment to study strongly interacting matter at neutron star core densities

- $\leq 10^7$ reactions/s at $\sqrt{s_{NN}} = 2.9 4.9$ GeV
- Determination of vertices ($\sigma \approx 50 \ \mu m$)
- Identification of leptons and hadrons
- Di-electron and muon setup
- Fast and radiation hard detectors
- Trigger-less free-streaming readout
- Online event selection
- 4-D event reconstruction
- 4 planar layers, z = 8 20 cm (in vacuum) \approx 0.15 m² area, 288 sensors, 150M pixels CMOS MAPS (MIMOSIS; TowerJazz 180 nm) $\approx 0.3\% - 0.5\%$ X_o per layer σ_{xy} = 5 µm, σ_z = 70 µm, t_{frame} = 5 µs
 - $< 0.7 \times 10^{14} n_{eq}/cm^2$, 5 MRad < 80 MHz/cm²; 0.1 MHz reactions

Micro-Vertex Detector (MVD)

	Silicon Tracking System (STS)
	8 planar layers, $z = 30 - 100$ cm (in air)
	pprox 4m ² area, 876 sensors, 1.8M channels
)	Double-Side Strips (Hamamatsu w/ SMX)
	pprox 0.3% – 2% X ₀ per layer
	σ_{xy} = 25 μ m, σ_t = 5 ns
	$< 1 \times 10^{14} n_{\rm eq}^{2}$
	< 10 MHz/cm ² ; 10 MHz reactions

n field of a superconducting dipole magnet (1 T·m), azimuthal acceptance of 2.5 – 25°

Lightweight, large-area, fast, radiation hard silicon detectors deployed for vertex (MAPS-based) and track (strip-based) reconstruction

Thermal Management Strategies

CTX THERMAL | KEEP IT

Swaqelok

MVD: Liquid-assisted conductive cooling

STS: Liquid-assisted impinging air-jet cooling

at FAIR nt Me

Cross-Sectional View (Illustration) of the MVD Quadrant

- Temperature: ~ 0 °C, down to -20 °C
- Power: 50 100 mW/cm², ~ 200 W total
- Liquid-cooled Heat Sink
 - Outside physics acceptance
 - Monophase 3M[™] NOVEC[™] 649 ≥ -20 °C
 - Vacuum-brazed aluminium heat sink
- Sensors passively cooled via Thermal Pyrolytic Graphite (TPG) carriers
 - Thermally Conductive ($\lambda > 1500 \text{ W/m} \cdot \text{K}$)

Full-scale MVD Quadrant

 $(191.0 \times 170.4 \text{ cm}^2)$

- Low material budget ($X_0 = 19.3$ cm)
- Polishing, laser ablation cutting, hatching Parylene coating, plasma activation

STS-Module: Silicon Sensors $(6.2 \times 6.2 \text{ cm}^2)$ + Microcables (Shielded) + FEE-Boards (10×3 cm², 25 W)

- Temperature: ~ +10 °C
- Silicon Sensors
 - Power: 50 mW/cm² at +10 °C, EOL
 - Impinging air-jets via perforated CF tubes
- Front-End Electronics
 - Outside physics acceptance (40 kW in 3 m³)
 - Monophase 3M[™] NOVEC[™] 649 @ -20 °C
 - Friction-stir welded aluminium plates
 - Thermally conductive heat path

"Lighter" air cooling for silicon sensors

"Heavier" liquid cooling for FEE (milled channels)

Experimental Validation with Realistic Demonstrators

Operational parameters and margins studied with thermal demonstrators under realistic conditions

1T (K)

8.7 8.3 7.9 7.5 7.2 6.8

6.4 6.0

5.7 5.3 4.9 4.5

3.4 3.0 2.6 2.3

P = 15 W

MVD Observable: Temperature gradient in the TPG bulk (ΔT)

Experimental Setup (MVD Test Stand @ Uni. Frankfurt)

STS Observable: Thermal runaway behavior at EOL fluence

Experimental Setup (Thermal Demonstrator @ GSI)

- Vacuum and cooling test stand for MVD quadrants
- Pre-series cooling element prototypes
- Exploration of operational parameters
- Substantial safety margins
- Agreement with quadrant-level thermal FEA simulations (ΔT in TPG bulk)

Thermal FEA Simulations

- Simulations: $\Delta T = 5.0 \text{ K}$
- Experiment at -30°C: ΔT = 6.7 K
- Experiment at +20°C: $\Delta T = 4.9 \text{ K}$
- Thermal Demonstrator to experimentally Temperature hotspots ∝ fluence verify the sensor and FEE cooling concept
- Pre-series cooling element prototypes
- Exploration of operational parameters
- Substantial margins at EOL fluence

Bundesministerium für Bildung

und Forschung

(outer ladders)

This work was

BMBF and GSI.

supported by HFHF,

Detector mechanics: Design finalized. First-of-series production: Starting soon. CBM global commissioning in 2028.

- References
- CBM Collaboration, Eur. Phys. J. A 53 (2017) 3, 60
- Technical Design Report for the CBM Micro Vertex Detector (MVD) (2021)
- Technical Design Report for the CBM Silicon Tracking System (STS) (2013)
- F. Matejcek, 'Using Novec 649 as the coolant for the MVD' (Technical Note, 2022)
- F. Matejcek, 'Integration of the CBM MVD Pre-Series Module', (MSc Thesis, 2024)

G 5 x HFHF

• K. Agarwal, H. R. Schmidt et al., Engineering Design Review CBM-STS Cooling (2023)

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT Physikalisches Institut