

Frontier Det of Glasgow 16th Pisa Meeting on **Advanced Detectors**

Status of the ATLAS ITk Pixel Project

Craig Buttar On behalf of the ATLAS ITk Pixel Collaboration 16th Pisa meeting on advanced detectors Elbe May 2024

LHC timeline

- HL-LHC luminosity ~7x10³⁴cm⁻²s⁻¹ integrated ~3000fb⁻¹
 - ~3.5 times Run-2 peak luminosity
 - ~x5 times integrated luminosity at end of Run-3
- Increased luminosity → Increased pile-up:
 - Up to 200 pile-up events expected at the HL-LHC compared to ~48 in current Run-3 data
 - Increased pile-up compromises pattern recognition and requires higher readout rates
- Increased luminosity → Increased radiation damage
 - Damage scales approximately linearly with luminosity ~x10 increase

"Phase-II" upgrade of ATLAS in ~2027

Simulated ttbar events with 200 pileup <u>ATLAS public plot</u>

ATLAS Inner Tracker (ITk)

Phase-II Inner Tracker (ITk)

The current inner detector system will be replaced with a new all-silicon tracking system -- ITk

New tracker

- Targeting the same or better performance than current Inner Detector
- Increased granularity to maintain occupancy <1%
- Low mass mechanics, cooling and serial powering to minimize material
- Increased radiation hardness

See talk "The ATLAS ITk strip detector system for the Phase-II LHC Upgrade " presented by Carles Solaz

Status of ATLAS ITk Pixel Project Craig Buttar

ITk Pixel detector layout

Outer Barrel: 3 layers of flat staves and inclined rings Si n-in-p planar quad modules 4472 quad modules, 6.94m² 2.3x10¹⁵n/cm⁻² 1.7MGy @4000fb⁻¹ Endcap: 3 layers of rings Si n-in-p planar quad modules 2344 modules, 3.64m² 3.1x10¹⁵n/cm⁻² 3.5MGy @4000fb⁻¹

450 [mm] Simulation Preliminary ITk Layout: 23-00-03 ATLAS 400 η = 1.0 η **= 2.0** 350 **Outer Endcap Outer Barre** n = 3.0 System 300 Outer 250 200 150 nner System Replaceable η = 4.0 100 50 500 1500 2500 3000 3500 1000 2000 z [mm]

~92M pixels ~2000 modules ~1.9m² active area ITk Pixel System ~5G pixels

Current pixel system

~9,400 modules

Layout described in

ATL-PHYS-PUB-2021-024

~13m² active area

Inner System Replaced after about 1500fb⁻¹

- 2 layers of flat staves and rings
- L0: 396 3D Si triplet modules and 1160 L1: n-in-p planar quad modules, 2.4m²
- 9.2x10¹⁵ncm⁻² 7.3MGy @2000fb⁻¹

University of Glasgow

Aim for a performance as good as or better than the current inner tracker

Modules

- 1 or 4 FE chips bump-bonded to sensor
 - Quad modules: 4 FE-chips bonded to 1 sensor
 - Triplet module: 1 FE-chip bonded to 1 sensor
- Cu-Kapton flex hybrid glued to sensor
 - Flex provides connections for power, DCS and data
- Mix of materials with different coefficients of thermal expansion make the module design challenging
 - Modules assembled at. +20°C, but lowest module temperature can be -45°C in the experiments
 - Difference in CTE between Cu and Si leads to thermal stress on the bumps
 - Amount of Cu needs to be carefully balanced between low power requirements and thermal stress on the bumps
 - Qualify bump-strength of solder based bumps after 100 thermal cycles (-55 → +60°C) for different vendors
 - Good results from qualification, being followed up in the pre-production
 - Indium bumps need further evaluation

See poster "Italian cluster technical solutions for the Quality Control tests to the modules of the ITk detector " presented by Giuseppe Carratta

Quad module

Triplet module

Status of ATLAS ITk Pixel Project Craig Buttar

Sensors

- Improve radiation hardness by:
 - Using thin planar sensor 100+150µm thickness
 - Use 3D sensors in inner layer

Irradiated 3D 25x100mm² & 50x50 μ m² module with ITkPixV1.1 readout irradiated to 1x10¹⁶n_{eq}cm⁻²

close to completion

See poster "Qualification of pre-production 3D sensors for the new ATLAS ITk detector with test beams" presented by Thibaud Carcone

Hybridisation

- Number of modules requires 4 ۲ hybridization vendors to meet the needed capacity
- Technical issues
 - Dicing of FE-chips can lead to chipping and debris
 - flip-chip of multiple FE-chips to a sensorhas caused problems for some vendors
 - Handling the bow of sensors during flipchip
- Currently, approximately 380 quad modules and 100 3D single modules delivered for technical evaluation and module pre-production

FE-chip voninnection

Solder bumps

laser pre-grooving and dicing

blade dicing

RD53 Collaboration: joint R&D for ATLAS and CMS ASIC in TSMC 65nm

- Main features for ATLAS
 - 65nm technology, 152800 pixels per chip, 50x50 μm² pitch, total area 2x2cm²
 - Tracking in dense environments
 - Low threshold operation
 - Cluster charge readout using Time over Threshold
 - Radiation environment
 - Sensor leakage current compensation
 - SEE hardening
 - 1.28Gb/s data rates
 - 4 data links per chip at 1.28 Gb/s
 - data compression
 - Optimisation of services
 - Merging of chip data in module
 - Integrated shuntLDO regulator for serial powering
- Final chip ITkPixV2 submitted March 2023
 - Wafer probing yield around 90% based on first 100 wafers

Wafer probing yield map

131 chips per wafer

Probing of full wafer takes about 24hrs

Yield map based on test of power, digital and analog functionality

Local Supports

- Local supports provide stable lowmass supports for modules and services
- Critical element is interface between module and cooling pipes
- Production of parts underway

Material

- Material impacts tracking, radiation levels, data rates and downstream detectors such as the calorimeter. It is important to minimize the material.
- Reduce material using
 - CO₂ cooling with thin titanium pipes
 - Modules with thin Si sensors (100-150μm) and FE-chips (150μm)
 - Serial powering of pixel modules to reduce cabling
 - Low-mass carbon structures for mechanical stability and mounting
 - Optimise number of readout cables using data link sharing

Status of the project

Area	PDR	Prototyping	FDR	Preproduction	PRR	Production
Planar Si sensors						
3D Si sensors						
FE-ASIC						
Hybridisation						
Module assembly						
On-detector services						
Off-detector services						
Data Transmission						
Bare Local Supports						
Loaded Local Supports						
Global Mechanics						
Integration						
Power supplies						
		Complete		Ongoing		Upcoming

Tenders for major components complete and contracts in place for major components:

- Planar sensors
- 3D sensors
- FE chips
- Module hybridisation
- Power supplies

- Outer barrel module loading and system tests
 - RD53 prototype modules loaded on to cells and thermally tested mounted onto local supports system test
 - Performance of modules monitored through the loading process
 - Work on system tests preproduction items in progress

Status of ATLAS ITk Pixel Project Craig Buttar

Summary

- The ATLAS ITk Pixel detector has been designed to operate in the challenging HL-LHC environment and maintain the performance of the current tracking system
 - Increased radiation hardness
 - Maintain pixel hit occupancy at 1% by increasing granularity
 - Low mass achieved using carbon based mechanics, serial powering and data merging
- The project is now in pre-production
 - Large scale production brings a new set of problems as more sensitive to rare problems
- Moving from development of individual items system level tests
 - Loaded local support system tests are underway, excellent testbed for integration issues

Backup

Status of ATLAS ITk Pixel Project Craig Buttar