

S. Giovannella (INFN LNF)

on behalf of the Mu2e Calorimeter Group

16th Pisa Meeting on Advanced Detectors 26 May – 1 June 2024

- Charged Lepton Flavor Violation and the Mu2e experimental technique
- Calorimeter requirements, technological choices and design

Muon (g-2)

Fermilab Muon Campus

- Calorimeter performance
- Quality Control of production components

Mu₂e

- Assembly status
- Commissioning
- Conclusions

Charged Lepton Flavour Violation @ Mu2e

CLFV strongly suppressed in Standard Model: BR $\leq 10^{-50}$ \Rightarrow **Its observation indicates New Physics**

- CLFV@Mu2e: coherent neutrinoless conversion of a muon to an electron in the field of a nucleus
- Goal: **10⁴ improvement w.r.t. current sensitivity experiment** (SINDRUM II at PSI)

With $10^{18} \mu$ stops:

4.6T

2.5T

$$R_{\mu e} = \frac{\mu^- + N(A, Z) \to e^- + N(A, Z)}{\mu^- + N(A, Z) \to \nu_{\mu} + N(A, Z - 1)} < 8.4 \times 10^{-17}$$

25 m

2T

Experimental technique:

Detector Solenoid

Muon stop on Al target

Tracker, EM Calorimeter

- Pulsed beam of low momentum muons
- 10 GHz of μ stopped in AI target trapped in nuclear orbit
- Normalization: nuclear captures ٠
- $\mu^-N \rightarrow e^-N$ signature: **mono-energetic** e^- with $E \sim M_{\mu}$ produced with τ_{μ}^{AI} = 864 ns

 $E_e = m_\mu c^2 - (B.E.)_{1S} - E_{recoil}$ $= 104.96 \,\mathrm{MeV}$

Cosmic Ray Veto

Lifetime = 864ns

1S Orbit

- Covers entire DS and half TS
- Reduces cosmic rays mimicking CLFV signal

Stopping Target Monitor

- Provides normalization factor
- Detects x-rays from muon atomic and nuclear capture procs

S.Giovannella – The Mu2e SiPM and crystal Calorimeter – 29 May 2024

Production, selection and transport of low momentum muon beam

Production and Transport Solenoids

Nuclear Recoil

The Electromagnetic Calorimeter

Calorimeter adds redundancy and complementarity w.r.t. the high precision tracking system:

- Large acceptance for mono-energetic conversion electron candidates (~100 MeV)
- \circ PID with μ/e rejection of 200
- EMC seeded track finder
- Standalone trigger

- EMC design:
- Two annular disks, R_{in} =374 mm, R_{out} =660 mm, 10X₀ length, ~ 70 cm 0 separation

0

Requirements:

 $\circ \sigma_{X,Y} \leq 1 \text{ cm}$

 $\circ \sigma_{\rm E}/{\rm E} = \mathcal{O}(10\%)$ for CE

 $\circ \sigma_T$ < 500 ps for CE

- 674+674 square x-sec pure Csl crystals, (34×34×200) mm³, Tyvek + Tedlar wrapping
- Redundant readout: For each crystal, two custom arrays (2×3 of 6×6 Ο mm²) large area UV-extended SiPMs
- Analog FEE directly mounted on SiPM + digital electronics in on-board custom crates
- Calibration/Monitoring with 6 MeV radioactive source and a laser system 0

S.Giovannella – The Mu2e SiPM and crystal Calorimeter – 29 May 2024

• Operate in 1T and 10⁻⁴ Torr

environment

Operate in harsh radiation

Technological choice

- Crystals with high Light Yield for timing/energy resolution Ο
 - LY(photosensors) > 20 pe/MeV 0
- Fast signal for Pileup and Timing: Ο
 - \circ τ of emission < 40 ns
 - Fast readout chain
- Redundancy in the readout chain 0
 - Two full independent readout chains per crystal
- Radiation Hardness (5 years of running with a safety factor 3): Ο
 - Crystals should survive a TID of 90 krad and a fluence of 3×10^{12} n/cm² 0
 - Photo-sensors should survive 45 krad and a fluence of $1.2 \times 10^{12} n_{1MeV}/cm^2$
- **1 T magnetic field** operation Ο

To reduce/handle the neutron induced leakage current SiPMs should be cooled down (x2 Idark reduction/10 °C)

SiPM running temperature at -10 °C

Module 0

Calorimeter performance validated with Module 0, a large-scale calorimeter prototype (51 crystals, 102 SiPMs/FEE, commercial digitizer) equipped with pre-prod components and tested with e^- beam

QC of production components

 $_{\odot}$ Crystals/SiPM production tests successfully completed in 2020

 $_{\odot}$ All \sim 1500 Read-Out Units assembled and tested:

- $_{\odot}$ 7 HV settings in the V_{op}-4V ÷ V_{op}+2V interval
- $_{\odot}$ 9 position filter wheel scan per HV value

Calibration of Gain, response and PDE + dependency on Vbias

Digital electronics

More info in Poster Session: Electronics and On-Detector Processing (E.Pedreschi/F.Spinella)

- Two digital boards:
 - MZB for SiPM/FEE HV settings & readout (HV, I, T)
 - $\circ~$ DIRAC for digitization @ 200 Msps, 12 bit ADC
- 2019-2021 B-field test + irradiation tests (TID, neutrons) with single components/boards
- End of 2022: SEL problem discovered on ARM processor (MZB) and Flash Memory (DIRAC) when irradiating boards with charged particle (proton, 60–200 MeV/c, 10¹⁰ p/cm²)
- 2023: proton irradiation campaigns + engineering effort to understand and solve the problem
 - new ARM, new Flash memory production
 - new layout with recovery circuits

MZB production (140 units) completed + Burn-IN + QC tested. **First 80 shipped to FNAL**

1/2 DIRAC production (70 units) completed Burn-IN + QC test in progress. **Ship to Fermilab in June**

Thermal vacuum test and VST

- Setup ready in Pisa for thermal vacuum test to complete temperature measurements in vacuum
- Missing MZB copper plates to dissipate heat through crates' cooling lines
 - $_{\odot}~$ 8 DIRACs and 8 MZBs in a final crate
 - $\circ~$ More than 20 thermal sensors monitored
 - $_{\odot}~$ 20 FEEs modified to provide signals from pulse injection
 - $_{\odot}~$ 1 DIRAC is connected to a DTC through an optical flange
 - $\circ~$ Mu2e slow control and data acquisition
 - Template fit of signal to evaluate performance

□ Preliminary test @ room temperature:

Assembly status: mechanics

More info in Poster Session: **Calorimetry** (D. Pasciuto)

All calorimeter mechanical parts built

- Disk-1 (Disk-0) mech structure assembled in June 22 (March 23)
- All crystals stacked on both disks
- CF plates with source tubing, Inner Rings installed
- Crates+FEE plates installed and leak checked
- Calorimeter feet for rails at Fermilab (March 2023)

Assembly status: readout

<image>

- For both disks, assembly of analog electronics and power distribution is completed
- $\circ~$ Cable routing completed for Disk-1 and 2/3 for Disk-0
- At Mu2e Hall:
 - $\circ~$ LV/HV power supplies installed
 - $\circ~$ Half DAQ cables and optical fibers installed

Source calibration system

- Neutrons from a DT generator irradiate a fluorine rich fluid (Fluorinert) that is piped to the front face of the disks
- $\circ~$ The following reaction chain grants photons at 6.13 MeV
 - ${}^{19}F + n \rightarrow {}^{16}N + \alpha$ ${}^{16}N \rightarrow {}^{16}O^* + \beta \quad t_{1/2} = 7 \text{ s}$ ${}^{16}O^* \rightarrow {}^{16}O + \gamma(6.13 \text{ MeV})$
- The produced gamma's illuminate uniformly the crystals
- \circ Few minutes of data taking calibrate each crystal at O(%)

- Source DT generator installed in Mu2e hall in its "cave" in 2022, final shielding completed in 2023
- o DT-generator HV operated up to 120 kV. ESH radiation survey performed in 2023 /2024 well within limits

Laser calibration system

- A pulsed green laser illuminates all crystals through a distribution system based on optical fibers and integration spheres
- Monitor gain variation at level of 0.5%
- Determine T0's at level of 100 ps
- Stability at a level of few %, monitored with PIN Diodes at laser source. Used at low rate in off-spill gates

e

Calorimeter commissioning

Assembly room @ FNAL, commissioning of $\frac{1}{2}$ disk at a time:

- $\circ~$ 4 PC servers, 6 Data Transfer Controllers, TDAQ fibers
- Readout of 36 boards, Event Builder + CR trigger selection
- Calibration/Commissioning with laser + Cosmic Ray events

- First laser data from the fully cabled calo disk in one calorimeter sector
- After this final test, the calorimeter will be moved in the Mu2e hall (fall 2024)

Monte Carlo studies for in-situ calibration

Calibration algorithms developed for in-situ energy and time calibration with 10h cosmic ray MC events:

- Fast calorimeter-based trigger selecting CRs crossing calo disks
- $_{\odot}~\sim 0.5\%$ spread on energy calibration
- \circ T₀ calibration at 15 ps level
- Npe/MeV evaluated from the response of the two SiPMs connected to the same crystal

Vertical Slice Test: cosmic ray events

- Module-0 equipped with MZB + DIRAC v2 boards, data collected in vacuum and at low T
- CR events triggered with external scintillators, XY MIP track reconstruction
- Calo calibration & monitoring algorithms finalized with simulation and Module-0 data:
 - Energy equalisation on 21 MeV MIP peak
 - Equivalent noise ≈ 200 KeV
 - Npe and SiPM gain stability check (+1.6 % /°C for SiPM gain)
 - Improved time evaluation + timing alignment @ 15 ps level

S.Giovannella – The Mu2e SiPM and crystal Calorimeter – 29 May 2024

CAPHRI: calo beam normalization & monitor

- Calorimeter Precision Hi-Resolution Intensity Detector (CAPHRI)
- 4 LYSO counters (ESR wrapped) replacing CsI to measure the 1.8 MeV "golden" line from muon capture in AI nuclei
- $\circ~$ Same size of CsI crystals with Mu2e SiPM readout
 - > 7-8% E resol., LY ~ 2000 Npe/MeV measured at 511 keV
 - <σ/μ> ~ 3% @ 1.8 MeV
- Faster measurement than STM to follow PBI variations
- 3% counting error per Injection Cycle (1.4 sec) expected from simulation, dominated by sqrt(Bckg)

Conclusions

- The Mu2e calorimeter demonstrated excellent energy (<10%) and time (< 500 ps) resolution for 100 MeV electrons for PID, triggering and track seeding purposes
- Production of detector components completed, digital electronics under completion
- Successful VST proved reliable operations and performance in vacuum and at low temperature
- o Calibration procedures finalized on Monte Carlo events and verified on prototype
- Calorimeter assembly in an advanced stage, including calibration system
- $\circ~$ Final integration of the detector with the TDAQ system is underway
 - > Calorimeter commissioning with cosmic ray events with 1/2 disk at a time planned
- Installation and transportation plans are progressing well
 - ➢ We expect to move the disks in the Mu2e hall in fall 2024