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AN APOLOGY FOR ADS3

• ADS3 IS A TOY MODEL THAT CAPTURES SOME 
OF THE MOST PUZZLING ASPECTS OF 
QUANTUM GRAVITY

• THERE ARE NO GRAVITATIONAL WAVES IN 
PURE ADS3 GRAVITY (AND THIS IS GOOD)

• A “SQUARE ROOT” OF PURE GRAVITY EXISTS

• ADS3 POSSESSES INFINITE-DIMENSIONAL  
ASYMPTOTICAL ALGEBRAS THAT IN PART 
REDUCE DYNAMICS TO KINEMATICS

• HIGH-SPIN FIELDS PROPAGATE ZERO 
DEGREES OF FREEDOM BUT THEY ARE 
NEITHER  FREE NOR EQUIVALENT TO FREE 
FIELDS
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WITH DIMENSION [square length] (NEWTON’S 
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INFINITE SET OF COUNTERTERMS

EINSTEIN ACTION HAS A COUPLING CONSTANT 
WITH DIMENSION [square length] (NEWTON’S 

CONSTANT)
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THE EASY PROBLEM WITH QUANTUM GRAVITY: 
RENORMALIZABILITY
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SCALAR MADE OUT OF RIEMANN TENSORS
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WHAT IF THEORY IS FINITE (N=8 SUPERGRAVITY?)

EXPANSION PARAMETER OF SERIES BECOMES LARGE AT
PLANCKIAN ENERGIES

 WE STILL WON’T KNOW HOW THE THEORY 
BEHAVES AT ENERGY

E = O(G�1/2 = MPlanck)

A2!N =
1X

l=0

(GE2)N/2+lAl
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ENERGY

E ⇡ 1p
G



PERTURBATIVE  QUANTUM GRAVITY FAILS  AT 
ENERGY

EXPECTED FROM CLASSICAL THEORY: A HIGH 
ENERGY COLLISION PUTS A LOT OF ENERGY IN A

SMALL SPACE.

ENERGY E SQUEEZED IN A SPHERE OF RADIUS 
R=GE DOES NOT SCATTER BACK:

IT GIVES A BLACK HOLE!

E ⇡ 1p
G



PERTURBATIVE  QUANTUM GRAVITY FAILS  AT 
ENERGY

EXPECTED FROM CLASSICAL THEORY: A HIGH 
ENERGY COLLISION PUTS A LOT OF ENERGY IN A

SMALL SPACE.

ENERGY E SQUEEZED IN A SPHERE OF RADIUS 
R=GE DOES NOT SCATTER BACK:

IT GIVES A BLACK HOLE!

E ⇡ 1p
G

QUESTIONS SUCH AS UNITARITY IN BLACK-HOLE 
EVAPORATION OR THE FATE OF SINGULARITIES 

REMAIN AS UNKNOWN AS IN THE NON-
RENORMALIZABLE THEORY



WHAT DOES PERTURBATIVE STRING THEORY 
ACHIEVE?
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ENERGY
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IT DELAYS ONSET OF STRONG COUPLING UNTIL 
ENERGY

RS = 2EG & Lstring = G1/2/gstring ! E & MPlanck/gstring

WE STILL DON’T KNOW WHAT THE THEORY 
DOES AT VERY HIGH ENERGY

WHAT DOES PERTURBATIVE STRING THEORY 
ACHIEVE?

RS ⌧ Lstring RS � Lstring
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RELATED PROBLEM: NONPERTURBATIVE 
OBSERVABLES

RELATIONAL OBSERVABLES ARE ONLY DEFINED 
PERTURBATIVELY AROUND A BACKGROUND

EXAMPLE:  AVERAGE CMB TEMPERATURE AS A 
CLOCK

PROBLEM: WHEN OBSERVABLE BECOMES ILL 
DEFINED (IT’S SPACETIME THAT’S ENDING OR IT IS  

MY WATCH THAT NEEDS TO BE REWOUND?)

 NON-PERTURBATIVELY DEFINED 
OBSERVABLES DEPEND ON THE ASYMPTOTIC 

BEHAVIOR OF SPACETIME



IN ASYMPTOTICALLY FLAT SPACETIME THE ONLY 
OBSERVABLE IS THE S-MATRIX 

IN STATES 
IN STATES 

OUT STATES OUT STATES 

J�J�

J + J +

LIGHT CONE 



ANTI DE SITTER SPACE 

SOLUTION OF EINSTEIN EQUATIONS WITH 
NEGATIVE COSMOLOGICAL CONSTANT 

(PROPAGATE SAME DEGREES OF FREEDOM AS 
PURE GRAVITY) 

Rµ⌫ � 1

2
gµ⌫R = 8⇡GTµ⌫ , Tµ⌫ = gµ⌫(d� 1)(d� 2)/16⇡GL2
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ANTI DE SITTER SPACE 

SOLUTION OF EINSTEIN EQUATIONS WITH 
NEGATIVE COSMOLOGICAL CONSTANT 

(PROPAGATE SAME DEGREES OF FREEDOM AS 
PURE GRAVITY) 

Rµ⌫ � 1

2
gµ⌫R = 8⇡GTµ⌫ , Tµ⌫ = gµ⌫(d� 1)(d� 2)/16⇡GL2

NEGATIVE CONSTANT 
ENERGY DENSITY

GEOMETRICALLY IT IS A d-DIMENSIONAL 
HYPERBOLOID IN A (2+d)-DIMENSIONAL SPACE 

OF SIGNATURE (2,d) 

�(x0)2 � (xd+1)2 +
dX

i=1

(xi)2 = �L

2



SIMPLEST CASE: d=2
ADS3 IS CONFORMAL TO A SOLID CYLINDER

BOUNDARY

ds2 = � cosh

2 ⇢dt2 + sinh

2 ⇢d�2
+ d⇢2

ds2 = z�2(�dw+dw� + dz2) w± = t± �, z = exp(�⇢)



SIMPLEST CASE: d=2
ADS3 IS CONFORMAL TO A SOLID CYLINDER

BOUNDARY

OBSERVABLES: LOCAL OPERATORS DEFINED ON 
THE BOUNDARY 



THE ASYMPTOTICAL  ADS3 METRIC IS PRESERVED 
BY A LARGE GROUP OF COORDINATE 

TRANSFORMATIONS THAT DEFINE A LARGE 
SYMMETRY GROUP
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THE ASYMPTOTICAL  ADS3 METRIC IS PRESERVED 
BY A LARGE GROUP OF COORDINATE 

TRANSFORMATIONS THAT DEFINE A LARGE 
SYMMETRY GROUP

w± ! w± + ✏±(w±) +
1

2
z2✏00⌥(w⌥)

z ! z � 1

2
z[✏0+(w+) + ✏0�(w�)]

PRESERVED BY GENERAL COORDINATE TRANSFORMATION

ds2 = z�2[�dw+dw� + gabdw
adwb + (1 +O(z2))dz2]
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THE ALGEBRA DEFINED BY THE CHARGES 
ASSOCIATED TO ASYMPTOTIC DIFFEOMORPHISM 

HAS A CLASSICAL CENTRAL CHARGE

[Ln, Lm] = (n�m)Ln+m +
c

12
�n,�mm(m2 � 1)

c = 3L/2G

DUE TO BROWN-HENNEAUX. 
RESULT EXTENDS TO MANY OTHER ASYMPTOTIC 

SYMMETRIES (KAC-MOODY, SUPERCONFORMAL ETC.)

IN ANY THEORY OF QUANTUM GRAVITY ON 
ADS3, STATES FIT IN UNITARY REPRESENTATIONS 

OF THE VIRASORO ALGEBRA
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ISN’T 3D GRAVITY NON-RENORMALIZABLE TOO?

S =
1

16⇡G

Z
d

3
x

p
�g(R� 2⇤)

[G]= LENGTH

NOT PURE GRAVITY: IT DOES NOT PROPAGATE LOCAL 
DEGREES OF FREEDOM

gµ⌫ = 6 degrees of freedom

x

µ ! x

µ
+ ⇠

µ
(x) = �3 (local change of coordinates)

R0µ � g0µR+ g0µ⇤ = 0 ! �3 non-dynamical equations = constraints



PURE ADS3 GRAVITY ADMITS BLACK HOLE 
SOLUTIONS,THE BTZ (BANADOS, TEITELBOIM, ZANELLI)
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PURE ADS3 GRAVITY ADMITS BLACK HOLE 
SOLUTIONS,THE BTZ (BANADOS, TEITELBOIM, ZANELLI)

ds2 = � (r2 �R2)2

r2
dt2 +

L2r2

(r2 �R2)2
dr2 + r2d�2, R =

p
8GML

LOCALLY SAME AS ADS3 BUT NOT GLOBALLY

IN ANY d ADS/CFT DUALITY CONJECTURE 
(MALDACENA ’97):

QUANTUM GRAVITY ON ADS3 = CONFORMAL FIELD 
THEORY ON BOUNDARY

FOR ADS3, BOUNDARY CFT IS 2d. BEST KNOWN BECAUSE 
OF INFINITE-DIMENSIONAL VIRASORO ALGEBRA
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ONE APPLICATION: BLACK HOLE ENTROPY FROM 
GENERAL PROPERTY OF CFT 

PARTITION FUNCTION OF CFT2 MUST BE MODULAR 
INVARIANT

Tr e��H = Z(�) = Z(1/�)

THEN ASYMPTOTIC DENSITY OF STATES IS (CARDY)
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BEKENSTEIN-HAWKING ENTROPY OF (ROTATING) BTZ

S = 2⇡R+/4G, R+ =
p

2GL(M + J) +
p

2GL(M � J)

L0 =
M + J

2
, L̄0 =

M � J

2
, c =

3L

2G
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CLASSICAL GRAVITY AS CHERN-SIMONS

SE = S(A)� S(Ã)
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CLASSICAL GRAVITY AS CHERN-SIMONS

SE = S(A)� S(Ã)

S =
k

4�

Z
tr (AdA+

2

3
AAA), k =

l

4G

A = e/l � �, Ã = e/l + �

IN CANONICAL QUANTIZATION 3D SPACE IS

M = �⇥R

CONSTRAINT EQUATION (GAUSS LAW)

F |� = 0 � A = dUU�1
(locally)
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GAUGE TRANSFORMATIONS IS A DIRECT 
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CLASSES OF) BOUNDARY GAUGE 

TRANSFORMATIONS TIMES  A FINITE 
DIMENSIONAL SPACE  

GEOMETRICALLY:



THE SPACE OF FLAT CONNECTIONS MODULO 
GAUGE TRANSFORMATIONS IS A DIRECT 

PRODUCT OF TWO SPACES: (EQUIVALENCE 
CLASSES OF) BOUNDARY GAUGE 

TRANSFORMATIONS TIMES  A FINITE 
DIMENSIONAL SPACE  

GEOMETRICALLY:

GLUE

U = V (�) exp(�D)

U = exp(�D)
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(IN)FINITE DIMENSIONAL SPACE WITH SEVERAL 
CONNECTED COMPONENTS. 

WHEN ALL HOLONOMIES ARE HYPERBOLIC  AND 
MANIFOLD HAS ONE BOUNDARY COMPONENT 

THIS SPACE IS 

RESTRICT  A|@⌃ =

✓
0 L(t+ �)
1 0

◆

T� ⇥Diff(S1)/S1MODULI SPACE IS

T� ⇥ cSL(2, R)/S1

THIS SPACE ADMITS A KAHLER STRUCTURE AND A 
KAHLER FORM: WE CAN QUANTIZE USING COHERENT 

STATES



CANONICAL QUANTIZATION HAS SEVERAL UNRESOLVED
ISSUES

ALTERNATIVE (WITTEN ’07): 
GUESS THE HOLOGRAPHIC DUAL OF PURE GRAVITY
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• FIRST PROPERTY: BLACK HOLES WITH M>J ARE 
ALLOWED. NO CONSTRAINT ON J 

• NO (PRIMARY) STATES WITH M<0 BESIDES THE 
VACUUM M=-c/24

CANONICAL QUANTIZATION HAS SEVERAL UNRESOLVED
ISSUES

ALTERNATIVE (WITTEN ’07): 
GUESS THE HOLOGRAPHIC DUAL OF PURE GRAVITY

QUANTIZATION OF ANGULAR MOMENTUM J AND 
PROPERTIES OF CFT IMPLY c=24k AND

HOLOMORPHIC FACTORIZATION

Z(⌃) = |Zh(µ)|2, µ = moduli of surface ⌃

EXISTENCE OF THIS THEORY STILL DEBATED
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IS PURE GRAVITY THE SIMPLEST GRAVITY THEORY IN ADS3?

PERHAPS NOT: CHIRAL HALF EXISTS (CLASSICALLY AT LEAST)
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FOR GENERIC        BAD THEORY WITH GHOSTS
AT               GHOSTS DISAPPEAR FOR 

BROWN-HENNEAUX BOUNDARY CONDITIONS
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ASYMPTOTIC ALGEBRA IS ONLY ONE COPY OF 
VIRASORO

Q(✏+) =
1

4⇡G

I
d�✏+h++ Q(✏�) = 0

ALSO: 
    
         

DEFINES A CHIRAL HALF OF PURE GRAVITY

Q(✏�) = 0

BOUNDARY CONDITIONS CAN BE RELAXED TO GIVE

Q(✏�) 6= 0

BUT THEORY HAS GHOST
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ADS3 POSSESSES HIGH SPIN THEORIES DUAL TO 
INTERACTING 2D HIGH SPIN ALGEBRAS

IN ANY DIMENSION D>2 CONFORMAL GROUP IS

SO(D � 1, 2) � SO(D � 1)⇥ SO(2)

SPIN 
s

CONFORMAL DIMENSION 

� � s+ (D � 3)/2

MASSLESS � = s+ (D � 3)/2

INTERACTING THEORIES OF MASSLESS 
HIGH SPIN PARTICLES EXIST IN ADS 

(VASILIEV)
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BOUNDARY DESCRIPTION

hj(x1).....j(xN )i

INTERACTIONS = CURRENT N-POINT 
FUNCTIONS ON BOUNDARY

MALDACENA-ZHIBOEDOV: IN D>3
SAME AS IN FREE THEORY

j =

8
<

:

 ̄�(µ1
@µ2 ....@µN ) 

�⇤@(µ1
@µ2 ....@µN )�

BUT NOT IN D=3!

� = s+ (D � 3)/2 ! j(µ1,....,µs)T
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IN D=3 INTERACTING HIGH-SPIN ALGEBRAS EXIST: WN

THEY ARE ALSO ASYMPTOTIC SYMMETRY ALGEBRAS OF
CHERN-SIMONS

SL(N,R)⇥ SL(N,R)

VASILIEV THEORIES IN 3D ARE (SCALAR +)
CHERN-SIMONS  

hs[µ]⇥ hs[µ] µ 2 R

“ANALYTIC CONTINUATION” OF SL(N,R)

hs[µ] = UEA[Ja]/{J2
0 � 1

2
(J�J+ + J+J�)� (µ2 � 1)/4}



hs[µ]⇥ hs[µ] µ 2 R

CHERN-SIMONS POSSESS A B-H ASYMPTOTIC ALGEBRA

W1(µ) = lim
N!1

WN,k µ =
N

N + k
k = l/4G



hs[µ]⇥ hs[µ] µ 2 R

CHERN-SIMONS POSSESS A B-H ASYMPTOTIC ALGEBRA

W1(µ) = lim
N!1

WN,k µ =
N

N + k
k = l/4G

SEMICLASSICAL LIMIT k � 1



hs[µ]⇥ hs[µ] µ 2 R

CHERN-SIMONS POSSESS A B-H ASYMPTOTIC ALGEBRA

SYMMETRY ALGEBRA OF             MINIMAL MODELS 

W1(µ) = lim
N!1

WN,k µ =
N

N + k
k = l/4G

SEMICLASSICAL LIMIT k � 1

WN

SU(N)k ⌦ SU(N)1/SU(N)k+1



hs[µ]⇥ hs[µ] µ 2 R

CHERN-SIMONS POSSESS A B-H ASYMPTOTIC ALGEBRA

SYMMETRY ALGEBRA OF             MINIMAL MODELS 

W1(µ) = lim
N!1

WN,k µ =
N

N + k
k = l/4G

SEMICLASSICAL LIMIT k � 1

WN

SU(N)k ⌦ SU(N)1/SU(N)k+1

GABERDIEL-GOPAKUMAR CONJECTURE: THIS IS CFT DUAL TO 
ADS3 VASILIEV HIGH SPIN THEORY

TESTS: SPECTRUM OF LIGHT STATES, SYMMETRIES, 
DEFORMATIONS OK



GRAVITATIONAL WAVES DO NOT PROPAGATE IN ADS3, 
BUT IT IS NEVERTHELESS A PRECIOUS THEORETICAL 

LABORATORY FOR QUANTUM GRAVITY 
BECAUSE IT POSSESSES KEY FEATURES OF 4D GRAVITY,

LIKE BLACK HOLES, 
TOGETHER WITH ESPECIALLY LARGE

ASYMPTOTIC ALGEBRAS THAT PARTIALLY REDUCE 
DYNAMICS TO KINEMATICS


