

ALICE 3 Inner Tracker

Riunione Referee ALICE – 20-21 Luglio 2023

Giacomo Contin - Università di Trieste & INFN Sezione di Trieste

- ITS3 as a first step towards ALICE 3 Inner Tracker
- Planned R&D activities for ALICE 3 Inner Tracker
- Requests for 2024

Silicon tracker evolution in ALICE

- **ITS1**: three silicon technologies
 - Hybrid pixels
 - Drift chambers
 - Micro-strips
- Operated for 10 years in ALICE
 - Essential ingredient for its physics output (secondary vertex reconstruction)

- ITS2: a large-scale MAPS detector
 - Monolithic Active Pixel Sensors
 - 10 m² active area
- Currently taking data

- ITS3: wafer-scale, bent silicon
 - Replacing the ITS2 innermost layers
 - Novel detector technology
- R&D endorsed by LHCC and running at full speed
- TDR in preparation

INFN Leadership in all Projects from the start

ITS2: from R&D to detector implementation

ITS2 specifications 7 layers: all MAPS 10 m², 24k chips, 12.5×10⁹ Pixels Innermost layer: radial distance: 23 mm material: X/X₀= 0.35% pitch: 29 × 27 µm² Rate capability: 100 kHz (Pb-Pb)

ITS2 expected performance

pointing resolutions of 15 μ m (in r and z) at p_T =1GeV/c tracking efficiencies > 90% for particles with p_T >200 MeV/c

- ITS2: the largest detector based on MAPS technology
 - Sensor (ALPIDE) and apparatus fully developed within ALICE
 - R&D program started ~12 years ago
 - Construction involved > 10 institutes
 - Currently taking data in ALICE

INFN BA, BR/PV, CA, CT, LNF, PD, TO, TS

Safe resource investment for concrete high-quality results

ITS2 technology transfer to other projects

ITS3: wafer-scale sensors with bent geometry

- Motivation: further material budget reduction \rightarrow improve tracking resolution x2 \rightarrow large physics impact
- Proposal: replace detector staves (tiled by several chips) by wafer-scale sensors that are bent around the beam pipe

ITS3: wafer-scale sensors with bent geometry

ITS3

- **Motivation**: further material budget reduction \rightarrow improve tracking resolution x2 \rightarrow large physics impact ٠
- Proposal: replace detector staves (tiled by several chips) by wafer-scale sensors that are bent around the beam pipe

First step towards the ALICE 3 Inner Tracker sensor and detector concept

R&D towards ALICE 3: bent MAPS sensors

- Silicon becomes <u>flexible</u> below 50 µm thickness
- Idea: bend existing MAPS sensors (ALPIDE) and interconnect to readout/control system
- Measure the bent sensor performance and compare with flat sensors

99% efficient

99.9% efficient

99.99% efficient

250

200

150

Threshold (e⁻)

R&D carried out within INFN

- Bending mechanics and procedures
- Curvature precision measurements •
- Wire-bonding on curved surface •
- Laboratory characterization •
- In-beam performance measurements

INFN BA, BO, CA, CT, PD, TO, TS

-0.0°

ALICE

Referee INFN - ALICE 3 Inner Tracker giacomo.contin@ts.infn.it

8

R&D towards ALICE 3: 65 nm CMOS process

Submitted to NIM A: https://arxiv.org/abs/2212.08621

INFN BA, CA, CT, PD, TO, TS

Referee INFN - ALICE 3 Inner Tracker giacomo.contin@ts.infn.it

R&D towards ALICE 3: mechanics & interconnections

• Large-area bending and mechanical supports

- Full-scale ITS3 Layer prototype in 180 nm CMOS
- Bent 65 nm CMOS structure characterization
- Interconnections on bent substrate

INFN BA, TO, TS

Referee INFN - ALICE 3 Inner Tracker giacomo.contin@ts.infn.it

BA, BS/PV, CA, CT/ME, PD, LNF, TO, TS

ALICE

Tracker layout (Lol)

Tracker layout (Lol)

Vertex Layers + L3

Zoom in on the first 4 layers

ALICE 3 Tracker — Iris: inside the beam pipe

Curved sensors

- 5 mm from IP
 - Crucial to gain highest possible vertex resolution
 - Extremely challenging requirements on sensor
- Retractable mechanics inside the beam pipe
- Vacuum-compatible services and interconnections

INFN R&D on Vertex Detector (= Iris)

Referee INFN - ALICE 3 Inner Tracker giacomo.contin@ts.infn.it

ALICE 3 Tracker — Outside the beam pipe

- ~60 m² active surface
 - Heavily relies on a module concept that can be automated/industrialised
 - ITS2 module production for 10 m² kept 5 institutes busy for years
- Low material budget $(1\% X_0)$:
 - Reducing power consumption will be key
- Physics simulations to define optimal layout are ongoing • Powering granularity and services (serial powering, DC/DC, on-detector switches)
- Less stringent requirement on position resolution (10 μm)
 - Will allow for larger pixels/grouping of pixels to reduce power
 - Reducing the noise contribution to the bandwidth
- A specific design for the Middle Layers (L3-L4-...) with lower material budget and different pixel specs will improve the p_T resolution at very low p_T

INFN R&D on Middle Layers

R&D INFN su Inner Tracker = Vertex + Middle Layers

• Sviluppo del sensore ALICE 3 Inner Tracker

- Sensore ITS3 e' il primo passo dello sviluppo del sensore per ALICE 3 Inner Tracker
- Per 2024 non c'e' richiesta dedicata per ALICE 3 chip
- Possibile la caratterizzazione orientata ad ALICE 3
- Indispensabile anticipare le attivita' orientate al risk mitigation su chip per ALICE 3
 - Abilita' del sensore *stitched* ITS di distribuire la tensione di alimentazione su grandi distanze attraverso gli strati metallici interni al silicio e' ancora sotto esame
 - Strato di ridistribuzione applicato con manifattura additiva
- Sviluppo tecnologie compatibili col vuoto per Iris
 - Meccaniche, sistema di raffreddamento, interconnessioni, materiali e colle
- Esplorazione comparata di **possibili layout dei Middle Layers**

from preliminary ALICE 3 planning

Inner Tracker WG CERN, Italy, Czech Rep, Netherlands, Norway, Ukraine

AI TCF

ALICE 3 Inner Tracker **Sensor** development

	Vertex De	tector	Outer Tr	racker	ITS3	ITS2	
Pixel size (µm²)	÷9 O(1	0 x 10)	* 2.8 O	(50 x 50)	O(20 x 20)	O(30 x 30)	
Position resolution (µm)	÷ 2	2.5	×	2 10	5	5	
Time resolution (ns RMS)	÷ 10	100	÷	10 100	O(1000)	O(1000)	
Shaping time (ns RMS)	÷ 25	200	÷	25 200	O(5000)	O(5000)	
Fake-hit rate (/ pixel / event)	~	< 10-8	2	≈ < 10-8	<10-7	<< 10-6	
Power consumption (mW / cm ²)	+ 75%	70	67%	6 20	20 (pixel matrix)	40 / 30**	
Particle hit density (MHz / cm ²)	× 20	94	÷ 10	0 0.06	8.5	5	
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)	× 3000 1	x 10 ¹⁶	* 100	2 x 10 ¹²	3 x 10 ¹²	3 x 10 ¹²	
Total Ionising Dose (Mrad)	× 1000	300	× 20) 5	0.3	0.3	
** Innermost layers / outer layers							
Improving ITS2/ITS3 performance in all aspects							
 Current goals extremely challenging, will be revised based on simulations, results from ITS3 development, and available resources 							
 No requests for 2024: ITS3 sensor IS the prototype for ALICE 3 							

- Improving ITS2/ITS3 performance in all aspects
- Current goals extremely challenging, will be revised based on simulations, results from ITS3 development, and available resources
- No requests for 2024: ITS3 sensor IS the prototype for ALICE 3 •

ALICE 3 IT Sensor risk mitigation: Redistribution layer

- In-silicon power distribution over long distances not yet validated
 - If *stitching* yield is sub-optimal for excessive voltage drop across the chip, a **post-processing** of the sensor is needed (measurements are ongoing)

Fall-back options:

- a) MAPS-foil: embed thin MAPS into polyimide sandwich, developed within ITS3
 - Copper traces deposited on the polyimide and connected to the sensor by through-hole metallization – traditional lithography
 - Adds ~0.05% X0, power dissipation not evaluated \rightarrow not ideal for ALICE 3
- Application of a **Re-Distribution Layer** (RDL) with additive manufacturing b)
 - Additional copper and polyamide layer(s) added to the wafer where needed
 - Trade-off between resistance and material budget
 - Aerosol Jet Printing (AJP) machine available at INFN TS UniTS:
 - 10 μm spatial resolution, on planar and bent substrate

Request for 2024: inks to develop conductive traces deposition through AJP

AJP – conductive traces

AI TCF

vacuum, **10⁻¹⁰ mbar**) to avoid contamination of primary vacuum

sensors in each petal are kept in a vacuum case (secondary

Foreesen in vacuum studies (~10⁻¹⁰ mbar):

outgassing measurements

IRIS is constituted by 4 petals

- vacuum level comparison Ο
- a.m.u. behaviour of residual gasses Ο
- sample weight comparison (*before and after outgassing*)
- Stress measurements on mechanical assembly
 - aluina Ο
 - wire-bonding Ο

Existing facility for vacuum studies (INFN BA)

Requests for 2024: vacuum pump, vacuum chamber baking lamp, vacuum components for ALICE 3-specific upgrade

ALICE 3 Vertex Layers (Iris): Vacuum technology

Existing equipment

Iris drawings

Options for Middle layers: L3-L4(-L5?)

- Lol concept
 - Traditional stave-based layout
 - Same sensor as larger radius layers
 - Mechanics, liquid cooling, interconnection bus ٠
 - 1% X_0 for normal incidence ٠
 - Length = 124 cm ٠
 - Coverage (L4): $|\eta| < 2.9$

Middle Layer layout - Lol concept

Options for **Middle layers**: L3-L4(-L5?)

- Lol concept ٠
 - Traditional stave-based layout
 - Same sensor as larger radius layers
 - Mechanics, liquid cooling, interconnection bus
 - 1% X_0 for normal incidence
 - Length = 124 cm
 - Coverage (L4): $|\eta| < 2.9$

Middle Layer layout - Lol concept

- Possible optimised layout for L3-L4 ٠
 - Flexible sensors with minimal supports
 - Same sensor as for the Iris layers
 - Added supports and I/O structures to cover the length
 - $0.1\% \sim 0.3\% X_o$ for normal incidence
 - Length = 100 cm (2x vertex layer length)
 - Coverage (L4): $|\eta| < 2.7$

Middle Layer layout – Optimised layout

Options for Middle layers: L3-L4(-L5?)

- Lol concept
 - Traditional stave-based layout
 - Same sensor as larger radius layers
 - Mechanics, liquid cooling, interconnection bus
 - 1% X_0 for normal incidence
 - Length = 124 cm
 - Coverage (L4): |η| < 2.9
- Possible optimised layout for L3-L4
 - Flexible sensors with minimal supports
 - Same sensor as for the Iris layers
 - Added supports and I/O structures to cover the length
 - 0.1% ~ 0.3% X₀ for normal incidence
 - Length = 100 cm (2x vertex layer length)
 - Coverage (L4): |η| < 2.7

Middle Layer layout – Optimised layout

- Possible optimised layout for L3-L4 ٠
 - Flexible sensors with minimal supports •
 - Same sensor as for the Iris layers
 - Added supports and I/O structures to cover the length
 - **0.1%** ~ **0.3%** X_0 for normal incidence
 - Length = 100 cm (2x vertex layer length) •
 - Coverage (L4): $|\eta| < 2.7$

Middle Layer layout – Optimised layout

Middle Layer layout – Optimised layout Possible optimised layout for L3-L4 • Flexible sensors with minimal supports 100 cm Same sensor as for the Iris layers Added supports and I/O structures to cover the length 0.1% ~ 0.3% X₀ for normal incidence Length = 100 cm (2x vertex layer length) • Coverage (L4): $|\eta| < 2.7$ * = Allowed on 30 cm wafers • Area = $0.239m^2 + 0.440m^2 < 0.7m^2$ Layer 3 can be formed with 4x4 sensors* (~25 x 6 cm²) Allowed dimensions for stitched sensor on 30 cm wafer Layer 4 can be formed with 4x4 sensors* (~25 x11 cm²) E 11 ~ 25 cm

٠

Middle Layer layout – Optimised layout Possible optimised layout for L3-L4 • Flexible sensors with minimal supports 100 cm Same sensor as for the Iris layers Added supports and I/O structures to cover the length 0.1% ~ 0.3% X₀ for normal incidence Length = 100 cm (2x vertex layer length) • Coverage (L4): $|\eta| < 2.7$ * = Allowed on 30 cm wafers • Area = $0.239m^2 + 0.440m^2 < 0.7m^2$ Layer 3 can be formed with 4x4 sensors* (~25 x 6 cm²) Allowed dimensions for stitched sensor on 30 cm wafer Layer 4 can be formed with 4x4 sensors* (~25 x11 cm²) G 11 ~ 25 cm

٠

- Possible optimised layout for L3-L4 ٠
 - Flexible sensors with minimal supports
 - Same sensor as for the Iris layers
 - Added supports and I/O structures to cover the length
 - 0.1% ~ 0.3% X₀ for normal incidence
 - Length = 100 cm (2x vertex layer length)
 - Coverage (L4): $|\eta| < 2.7$
 - Area = $0.239m^2 + 0.440m^2 < 0.7m^2$
 - Layer 3 can be formed with 4x4 sensors* (~25 x 6 cm²)
 - Layer 4 can be formed with 4x4 sensors* (~25 x11 cm²)
 - Material thickness of **0.1%** X₀ is in reach •
 - Longer sensor chain with simpler mechanics/cooling wrt Vertex
 - ITS3-like assembly
 - Repeated to cover the length
 - Demonstrate the feasibility!

Allowed dimensions for stitched sensor on 30 cm wafer

~ 25 cm

* = Allowed on 30 cm wafers

- Possible optimised layout for L3-L4 ٠
 - Flexible sensors with minimal supports
 - Same sensor as for the Iris layers
 - Added supports and I/O structures to cover the length
 - 0.1% ~ 0.3% X_0 for normal incidence
 - Length = 100 cm (2x vertex layer length)
 - Coverage (L4): $|\eta| < 2.7$

Requests for 2024: carbon foam and carbon fiber to prepare rings and support structures for Middle Layer mechanical prototypes

INFN R&D: Inner Tracker (Vertex + Middle)

- Sensor for Vertex and Middle Layers
 - Main sensor development and characterisation
 - Adaptation for Middle Layers
- In-vacuum mechanics, cooling, interconnections
- Re-distribution layer for power & interconnections
- Middle Layers layout
 - Concepts, feasibility, prototypes

Covered within ITS3 for 2024

+ others

28

TS + others

ALICE 3 Inner Tracker: richieste 2024

Attivita'	Dettaglio	Richiesta 2024 (k€)	Sede
Sviluppo e caratterizzazione sensore	-	0	BA, BS/PV, CA, CT/ME, PD, LNF, TO, TS
Studi di vuoto	Pompa a vuoto, dispositivi di bake-out, componenti	15	BA
Prototipi meccanici Middle layers	Fibra e schiuma di carbonio sagomate	10	TS* (per TS & PD)
Strato ridistribuzione con manifattura additiva	Inchiostri AJP conduttivi/isolanti	7	TS
TOTALE		32	
Missioni	Test in vuoto di prototipi	2	TS* (per tutti)

Thank you for your attention!

Backup: ALICE 3 tracker – specifications

- Hit density decreases by $O(10^4)$ from layer 0 to layer 10 ٠
- Bandwidth dominated by the vertex detector

Middle Layers

Noise performance critical for the outer most layers ٠

Bandwidth:16 bit / hit, single pixel clusters

Referee INFN • ALIC Radiationcload: 50 months of 24 MHz pp interactions

giacomo contin Fake mit rate: 10-8 / pixel / event at 40 MHz readout rate

31

Main R&D items for the ALICE 3 Tracker (I)

- Sensor development (ALICE 3 ER1' foreseen by 2027)
 - Challenging requirements:
 - Highest possible vertex resolution (Vertex Detector)
 - High radiation tolerance (Vertex Detector)
 - High Speed front-end circuit
 - High Data Bandwidth to handle
 - Extremely low noise (Outer Tracker)
 - Low power consumption (extremely low for Outer Tracker)
 - Single-point failure tolerance
 - At least two sensor versions need to be developed
 - Common development with fork-off?
 - Existing low-performance technology for Outer Tracker?
 - Is a third version needed for Middle Layers?
 - In collaboration with CERN and other Institutions (ITS2/ITS3 model)

Main R&D items for the ALICE 3 Tracker (II)

- Iris development (L0-L1-L2, inside the beam pipe)
 - Vacuum-compatible technology
 - Retractable mechanics
 - Flexible sensors
 - INFN groups with significant experience, strong commitment from CERN
- Middle layers (L3-L4, outside the beam pipe)
 - Bent silicon to equip ~0.7 m^2 with low-material supports and I/O structures
 - Substantial data bandwidth and power consumption
 - Well-defined item matching INFN groups' expertise
- Sensor characterization
 - Crucial for the sensor development
 - ITS3 experience shows that a large effort is needed
 - Easy to contribute for small/medium-sized groups

Resources ramping up in 2024-2028

• 8 groups involved:

Bari, Brescia/Pavia, Cagliari, Catania/Messina, Frascati, Padova, Torino, Trieste

- ~15 FTE (total of 25 collaborators*) for detector R&D and construction
 - 4-5 on sensor design
 - 3 designers already integrated in the ITS3 design, more to come
 - Need to focus on ALICE 3-specific design quite soon
 - 6-7 on sensor characterisation
 - 6 groups already active participants in ITS3 test system development and sensor characterisation
 - 4 on integration and mechanics
 - Experience on ITS2 mechanical structure and ITS3 integration

* including Researchers, Postdocs, PhD students, Engineers, Technicians

• Adequate contribution to simulation and physics studies

News on available infrastructures

- Well equipped laboratories and workshops in most of the sites
 - (Automatic) probe stations, bonding facilities, CMMs, radiation sources, mechanical workshops
- Additional infrastructures
 - Vacuum laboratory, assembly clean room
 - Assembly clean room, X-ray facility, soon cyclotron
 - Beam test facility, assembly clean room
 - Assembly clean room, X-ray facility
 - X-ray facility, future sensor and AM laboratory

@ Bari

- @ Padova
- @ Frascati
- @ Torino
- @ Trieste

FTE and infrastructures availability expected to grow once the project starts

۲

. . .

