Muon IDentifier: status e richieste

A. Ferretti, <u>M. Gagliardi</u>, L. Terlizzi (Università e Sezione INFN, Torino)

Riunione ALICE-Referee 20/07/23

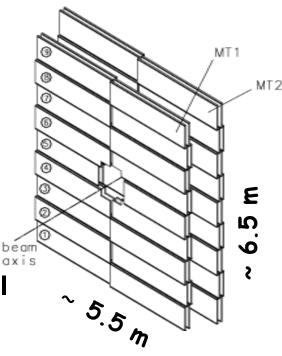
ALICE Muon Identifier

- -72 Resistive Plate Chambers arranged in 4 detection planes
- Single RPC areas range from 72x223 cm² to 76x292 cm²

Responsibilities:

Torino: Gas gaps, external mechanics, control system, gas system.

- ~ 7 FTE
- Ruoli di responsabilità in MID:


Muon Identifier Sub-Project Leader (A. Ferretti)

Muon Identifier Technical Coordinator (P. Mereu)

Muon Identifier (+MCH) Subsystem Run Coordinator (L. Terlizzi)

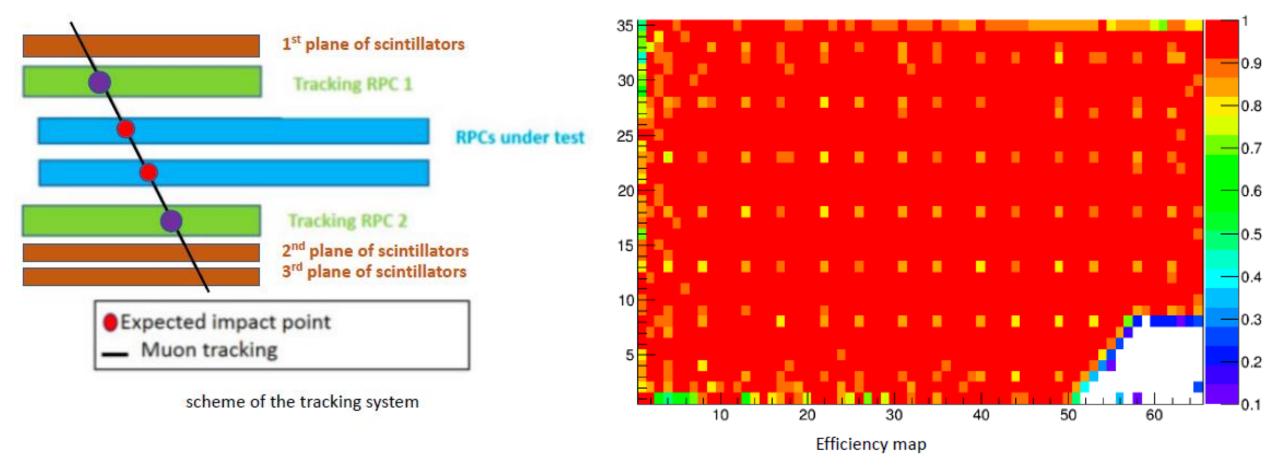
+ Muon Spectrometer Project Leader (M. Gagliardi)

Clermont-Ferrand + Nantes (F), iThemba (SA): front end and readout electronics, software

The Muon Trigger upgrade to Muon Identifier

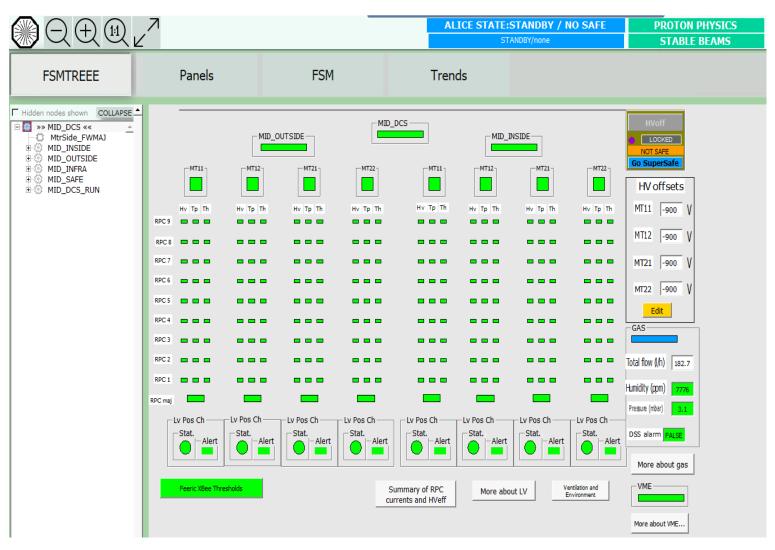
- ☐ Goal #1: detector performance and safe long-term operation in such a scenario
 - -> detector and FEE upgrade (<u>INFN Torino</u>, LPC Clermont-Ferrand)
 - a) reduce charge-per-hit by a factor 3-5 by developing FEE cards with amplification
 - b) replace ~30% most irradiated RPCs → production of new RPCs
- \Box **Goal #2:** dead time-free readout (vs present 150 µs)
 - -> readout electronics upgrade (Subatech Nantes, LPC Clermont Ferrrand)

RPC production and status in INFN-TO lab (1)


- RPCs production before 2019 highly unsatisfactory
 - → inefficiency holes at the HV working point (WP)
 - → high currents
 - → general carelessness in the production process
- New pre-production batch of 3 RPCs at the end of 2019, after several interactions with the firm -> OK
- Production and test of new batch of RPCs (~20) delayed by COVID + moving of INFN laboratories in Torino + manpower issues
- Tests went on (almost) full speed in Q1 and Q2 2023
 14/18 RPCs tested
 - 12 OK (4 already installed), 2 OK but high current

Example of inefficient chamber

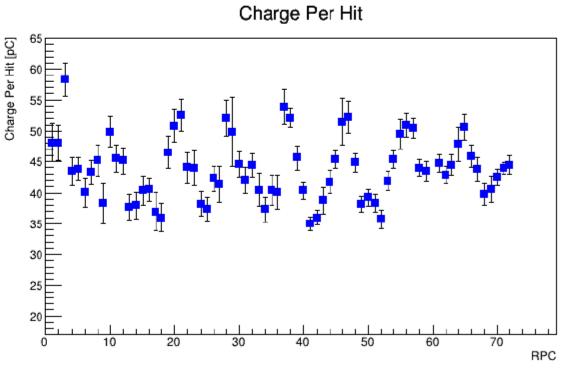
RPC production and status in INFN-TO lab (2)



Test of full production completed in 2023

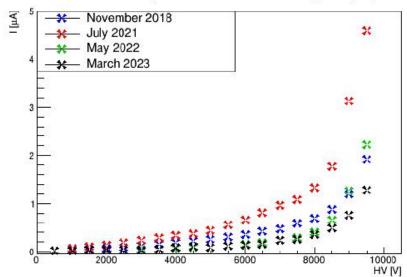
New RPCs kept as spares or installed during YETS 2023/24

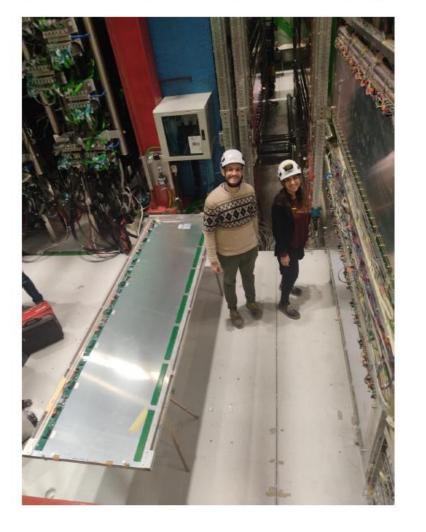
MID operation at CERN


- Commissioning and integration after LS2 overall successful
- Up to now, MID has always been READY and taking data with pp collisions
- TODO: HV and threshold scan to fine-tune working parameters
 - -> delayed so far due to need for dedicated beam time (with MCH) and issues with threshold distribution system.
- Also TODO: optimization of Quality Control tools, both synchronous and asynchronous

MID performance 2022 – Charge per hit

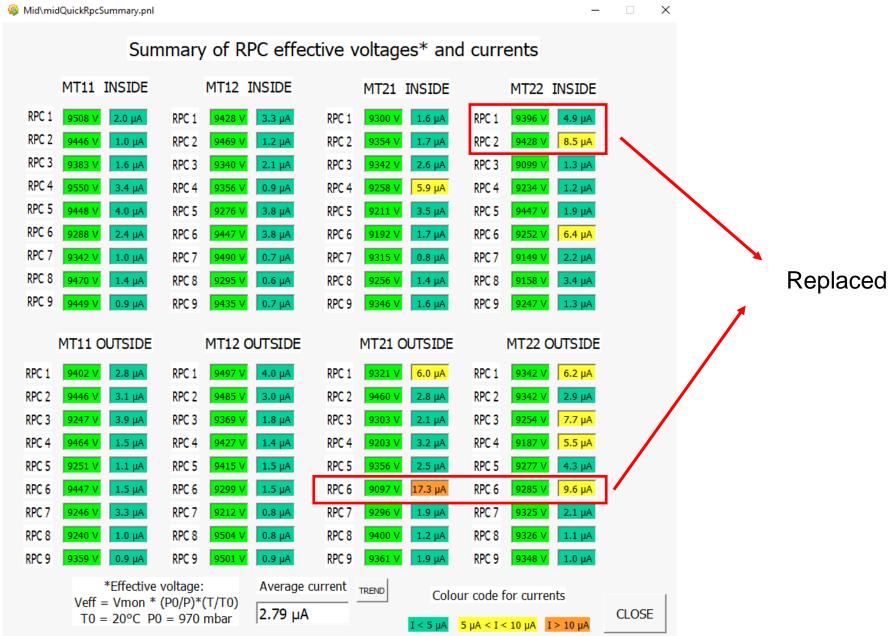
Charge per hit estimated from the slope of the current/counting rate correlation


- The average charge per hit is between ~35 pC and ~ 55 pC depending on the RPCs, with much larger uncertainty for those RPCs in which the current was more unstable
- The charge per hit must be compared to the one expected from FEERIC performance studies
 - → it was expected that the charge released per hit should have been 4 times lower for FEERIC equipped RPCs with respect to ADULT equipped ones
 - → since during Run 1 and Run 2 the charge released per hit with ADULT was ~150 - 200 pC, then with FEERIC ~ 35 - 50 pC is what expected

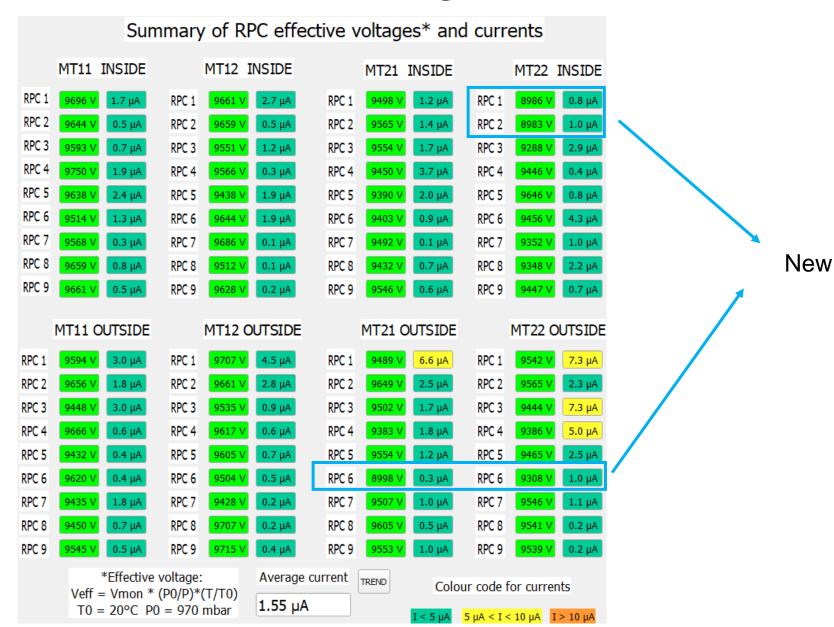


MID YETS 2022/23 activities

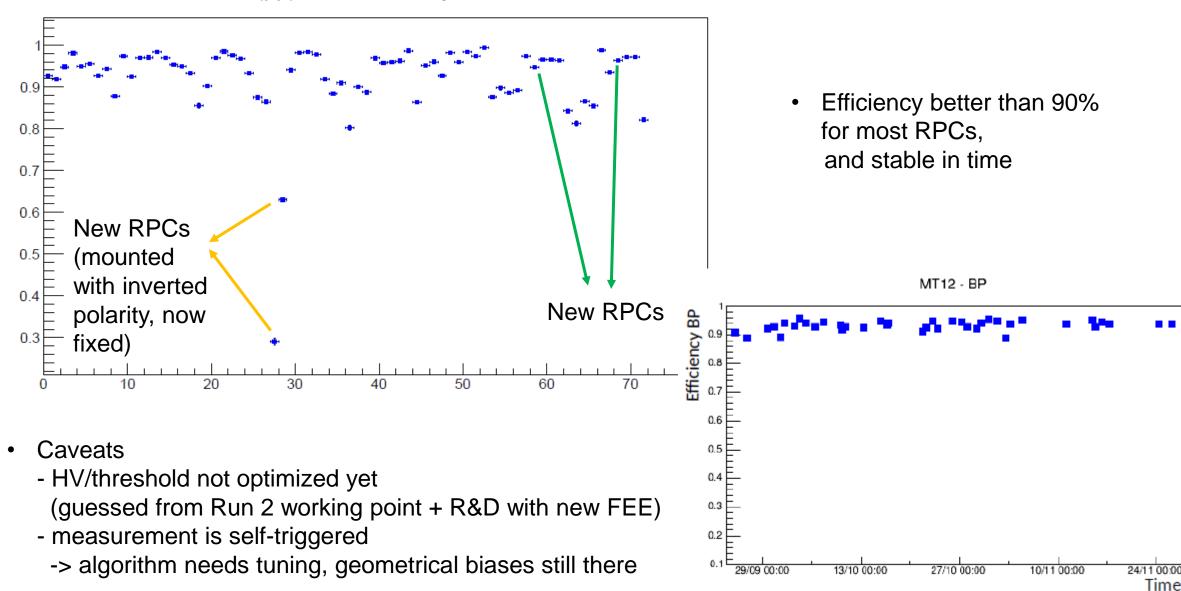
- Replacement of 4 gas gaps (the very first with the new bakelite installed in cavern):
 - 2 in December 2022, i.e. MT22IN1 and MT22IN2
 - 2 in March 2023, i.e. MT22OUT6 and MT22OUT6
- Average current value at 9500 V:
 - 1.92 μA in 2018 (end of Run 2)
 - 4.59 μA in 2021 (first ramp-up after Run 2)
 - 2.23 μA in 2022 (after the interventions)
 - 1.28 μA in 2023 (after gas gaps replacement)


Average MID dark current during ramp-up

Deployment of several improvements in the online systems (mostly DCS)


RPC currents at (tentative) working point 2022

RPC currents at (tentative) working point 2023


The performance of the 4 newly installed chambers is satisfactory:

- Stable current
- Efficiency OK (see next slide)
- However, MT22_OUT6 shows noise in some spots that require strip-masking
 investigating

MID performance - Efficiency

(pp) RPC Efficiency

MID plans 2023-2024

2023

- as stable as possible data-taking with pp collisions, fine-tuning of RPC HV with the goal to be in the best possible shape for the Pb-Pb run (November 2022)
- complete tests of the new RPC batch

Winter shutdown 2023-24

- RPC maintenance + replacement of 2-4 RPCs
- New threshold distribution system

2024

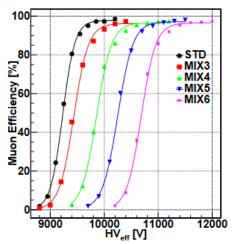
- fine-tuning of thresholds
- stable data-taking with proton and heavy-ion beams
- maintenance interventions as needed

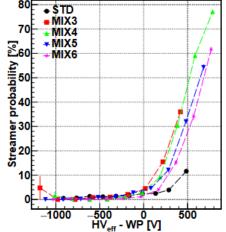
Milestones

Anno	Milestone	Compl. al 30/06/23	Commenti	
2022	Partecipazione presa dati con collisioni pp e Pb-Pb	100%		
2023	Partecipazione costante e regolare alla presa dati con collisioni pp e Pb-Pb	50%	presa dati Pb-Pb ancora da svolgere, rivelatore stabilmente in presa dati	
2024	Partecipazione costante e regolare alla presa dati con collisioni pp e Pb-Pb			

R&D on freonless gas mixtures

Investigating replacement (in Run4) of $C_2H_2F_4$ (subject to usage restrictions by EU \rightarrow cost and availability affected)


Main candidate for replacement: C₃H₂F₄+CO₂


At CERN: beam and ageing tests at GIF++ in the framework of ECOgas@GIF++ collaboration (CMS, ATLAS, ALICE, SHiP, EP-DT)

In Torino: setting up a cosmic-ray test station devoted to new eco-friendly mixture studies with small prototypes

(a) Efficiency curves vs effective high voltage

(b) Streamer probability as a function of effective high voltage minus detector working point

Figure 4.42: Efficiency and streamer probability curves at source off. HFO/CO₂: 25/69,30/65,35/60,40/55 (MIX3, MIX4, MIX5, MIX6)

Richieste 2023

Richieste specifiche

- Interventi di maintenance durante i technical stop:
 → 5 settimane al CERN per 2 tecnici + 1 fisico/tecnologo
 → 15 kEuro missioni
- Partecipazione ad attività progetto Ecogas@GIF++ (beam + ageing tests)
 → 4 settimane al CERN
 → 4 kEuro missioni
- Acquisto bombole di gas per test nuove miscele con raggi cosmici 7 kEuro consumo

+M&O-B: 36 kCHF Servizi

Backup

More MID YETS 2022/23 activities

Readout cards:

- 5 regional card spares produced, but issues found => investigating
 - 4 out of 5 cannot bring the GBT links UP
 - 1 reg/5 can bring the GBT links UP but has stability issues

Slow control:

- Install remote power switching for AnywhereUSB => done and validated
- Configure RO electronics at SOR instead of whenever the GBT link goes down => done
 - Ensures clock is stable
 - Electronics is well configured right before data taking
- Change of run workflow => done
 - Calibration run at RAMP in SAFE
 - Brings links UP if down (~60 s)
 - Generates list of bad channels
 - Physics run => Since links are UP configuration takes ~10 s
 - Calibration at DUMP in READY => for "dark" hit rate measurements

MID M&O-B 2024

	Spesa
budget description	(kCHF)
Mechanics	3
Gas Systems	3
Cooling Systems	
FEE spares	
Standard Electronics LV/HV PS	5
Standard Electronics Crates	5
Standard Electronics R/O modules	
Controls (DCS & DSS)	
Sub-Detector spares	5
Areas	
Communications	3
Store Items	2
Technical Manpower @ CERN: Industrial	
Support	
Technical Manpower @ CERN: subsistence	56
Totale	82

INFN share in MID M&O-B: 44% → INFN contribution = 36 kCHF

Profilo di spesa RPC + gas system

	201 5	2016	2017	2018	2019	2020	2021	Tot
MoU (kCHF)	41	17	7	37	0	0	0	102
Finanziamento INFN (kCHF)	41	17	7	0	23	5-9 (sblocco s.j. settembre)	13 s.j.	93-97+13 s.j.

Profilo di spesa FEERIC

	2015	2016	2017	2018	2019	2020	Tot
MoU (kCHF)	16.5	32	30.5	10	5	0	94
Effettivo (kCHF)	17.5		48	0	10	0	75.5
Finanziamento INFN (kCHF)	30	32	3.5	0	10	0	75.5