Search for Hidden And Dark Objects With the SPS

Italy:

INFN-Bologna Universita' di Bologna INFN-Ferrara INFN- Frascati INFN- Napoli INFN-Roma1 INFN-Roma3 ⁽¹⁾ CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland ⁽²⁾ INFN, Sezione di Napoli, Napoli, Italy ⁽³⁾ Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany ⁽⁴⁾ INFN, Sezione di Ferrara, Ferrara, Italy ⁽⁵⁾ INFN Laboratori Nazionali di Frascati, Frascati (Rome), Italy ⁽⁶⁾ INFN, Sezione di Roma III, Roma, Italy ⁽⁷⁾ Johannes Gutenberg Universitat Mainz, Mainz, Germany ⁽⁸⁾ INFN, Sezione di Bologna, Bologna, Italy ⁽⁹⁾ Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ⁽¹⁰⁾ PARTREC and University of Groningen, Groningen, The Netherland ⁽¹¹⁾ INFN, Sezione di Roma III, Roma, Italy ⁽¹²⁾ University of Freiburg, Freiburg, Germany ⁽¹³⁾ Charles University, Prague, Czech Republic ⁽¹⁴⁾ Royal Holloway, University of London, UK ⁽¹⁵⁾ INFN, Sezione di Roma1, Roma, Italy ⁽¹⁶⁾ University of Bologna, Bologna, Italy

SHADOWS-LNF

Alessandro Calcaterra Paolo Ciambrone Giulietto Felici Luca Foggetta Gaia Lanfranchi Tommaso Napolitano Alessandro Paoloni

E l'insostituibile aiuto di: Alessandro Balla Maurizio Gatta Giuseppe Papalino

LNF – Gruppo 1 meeting – 20 september 2023

European Strategy for Particle Physics recommendations

- 4. Other essential scientific activities for particle physics:
- a) The quest for dark matter and the exploration of flavour and fundamental symmetries are crucial components of the search for new physics.
- This search can be done in many ways, for example through precision measurements of flavour physics and electric or magnetic dipole moments, and searches for axions, <u>dark sector candidates and feebly interacting particles</u>.
- There are many options to address such physics topics including energy-frontier colliders, accelerator and non-accelerator experiments. <u>A diverse programme that is complementary to the energy frontier is an essential part of the European particle physics Strategy</u>.

SHADOWS can explore <u>low-mass (< 5 GeV) NP with very feeble couplings</u> becoming a main player in the future CERN diversity programme.

SHADOWS: 20 very intense (and exciting) months..

From the Expression of Interest (Jan 22) \rightarrow Proposal (Aug. 23) the collaboration almost tripled (82 collaborators, 16 institutions)

SHADOWS in ECN3 (North Area)

Letter of Intent submitted to the SPS Committee beginning of November

https://cds.cern.ch/record/2839484/files/SPSC-I-256.pdf

The high-intensity K12 beam line

Fully compatible and synergistic with the (already funded) North-Area Consolidation Programme:

5x10¹⁹ protons-on-target (pot), with 4.8 sec long spills, can be delivered to ECN3
 in 4 integrated years with a dedicated beam delivery for ECN3, and shared cycles to EHN1 and EHN2.
 This annual yield is fully compatible with the current North Area operation.
 additional (14 + 50) MCHF asked to CERN Management for upgrade of the beamline + area

SHADOWS in the TCC8 tunnel

The Detector

SHADOWS must be able to reconstruct and identify most of the visible final states of FIPs decays

Scalar portal	$\ell^+\ell^-, \pi^+\pi^-, K^+K^-$
Pseudo-scalar portal	$\ell^+\ell^-, \gamma\gamma, \pi^+\pi^-, K^+K^-$
Vector portal	$\ell^+ \ell^-, \pi^+ \pi^-, K^+ K^-$
Fermion (neutrino) portal	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}(\rho^{\mp} \to \pi^{\pm}\pi^{0}), \ell^{+}\ell^{-}\nu$

Standard spectrometer, with 19m long in-vacuum decay volume, excellent tracking system, high resolution timing layer, ECAL with pointing capability, muon system and efficient vetoes

The Detector: Upstream & Lateral Veto

Institutes: INFN-Roma3, INFN-Naples Expertise: ATLAS new small wheels.

The Detector: Muon System

Groups: INFN-LNF, INFN-Bologna, INFN-Ferrara **Expertise:** LHCb muon system, CMS muon system

Goal:

identify muons and reduce muon combinatorial background via timing measurement.

Technology:

3 stations of scintillating tiles with direct sipm readout Interleaved by iron filters. Measured 250 ps resolution per station.

Two full-size modules already funded by INFN in 2023 and used to measure the off-axis muon flux in ECN3 during the June 2023 campaign (see later).

Requirements fully satisfied.

Validation of the simulated off-axis muon flux with SHADOWS prototypes

Measurement performed in June 2023 with NA62 operated in beam-dump mode at nominal beam intensity. Effort partially funded via EUROLABS European Grant.

Validation of the simulated off-axis muon flux with SHADOWS prototypes

Measurement performed in June 2023 with NA62 operated in beam-dump mode at nominal beam intensity. Effort partially funded via EUROLABS European Grant.

Validation of the simulated off-axis muon flux with SHADOWS prototypes

Excellent agreement between the results obtained with (very different) detectors gives reliability of the measurement. Off-axis measurements confirmed the on-axis ones. Simulation is now fully validated.

Target station: Radiation Levels

C. Ahdida, L. Esposito, S. Niang, E. Nowack CERN PBC ECN3 Task Force

1-MeV equivalent neutron fluence, high energy hadron fluence and thermal neutron fluence evaluated with a detailed FLUKA simulation in SHADOWS area

Radiation levels are not a show-stopper in the very-close-to-dump SHADOWS location

Radiation- tolerant electronics will have to be used in proximity of the SHADOWS detector Dedicated alchoves with iron/concrete shielding far from the dump for the off-detector electronics.

Physics sensitivity: Light Dark Scalar mixing with the Higgs

(mediator of sub-GeV DM interacting with SM particles; candidate for relaxion mechanism, etc.)

accepted by EPJC

Physics sensitivity: ALPs with fermion couplings Axions/ALPs in the MeV-GeV range are possible solution to the strong-CP problem

Worldwide landscape from FIPs2022 Proceedings, arXiv:2305.01715, accepted by EPJC **FASER2** at the Forward Physics Facility; and is very similar to CODEXb with the full data set at the end of the HL-LHC (3 ab^{-1}).

Physics sensitivity: HNL with tau couplings

Possible solution to the origin of the neutrino masses and matter-antimatter asymmetry

experimental bounds (ArgoNeut & BaBar) and is better than DarkQuest, CODEX-b and FASER2.

Project Schedule

2023	2024	2025	2026	2027	2028	2029	2030	2031	
	NA62 Run		LS3	LS3	LS3	ECN3/HI Installation/ commissionin g	ECN3/HI Installation/ commissioning	ECN3/HI run	
Proposal	TDR	TDR	TDR/PRR	Production	Production	Production/ Installation	Installation/ Pilot Run	SHADOWS run	
2032	2033	2034	2035	2036	2037	2038	2039	2040	
ECN3/HI run	LS4			EC	N3/HI Run		LS5		
SHADOWS run	consolidation	SHADOWS run	SHADOWS run	SHADOWS run	SHADOWS run	SHADOWS run	consolidation	SHADOWS run	

If approved, SHADOWS will be ready to start data taking in 2030 and collect 5x10¹⁹ pot by 2040. (SHADOWS run beyond 2040 will depend on the compatibility with HIKE-phase 2)

Project Organization: preliminary groups interest

Item	Technology	Interested groups
MIB system	magnetized	
	iron blocks	CERN, LNF-INFN
Upstream Veto	Micromegas	INFN (Rome3, Naples)
Decay Vessel	in-vacuum	CERN
Dipole Magnet	warm	CERN
Tracker	Straws	Heidelberg
Timing Layer	scintillating bars	Freiburg
ECAL	StripCal	Mainz, KIT
Muon	scintillating tiles	INFN (LNF,Ferrara, Bologna)
Software		INFN-Rome 1, Prague
TDAQ		CERN
NaNu		Mainz/Bonn

 Table 41. Preliminary group interests for SHADOWS sub-detectors and activities.

All detectors/activities have groups involved. Still a lot of room for new groups/collaborators.

Project Organization: preliminary cost estimate

Table 40. Preliminary cost estimate of SHADOWS sub-detectors and magnets. The cost of theNaNu experiment is reported in the last row.

Item	Technology	Cost (M€)
MIB system	magnetized	
	iron blocks	0.992
Upstream Veto	Micromegas	0.860
Decay Vessel	in-vacuum	1.0
Dipole Magnet	warm	2.57
Tracker	Straws	1.624
Timing Layer	scintillating bars	0.180
ECAL	StripCal	0.980
Muon	scintillating tiles	1.111
TDAQ		0.250
Total SHADOWS		9.567
Total NaNu		2.840

Cost uncertainty C3 class: (-(10-20)%, +(10-30)%)

The relative small-medium size (and cost) makes SHADOWS feasible and realistic in the short timescale (start production in three years from now, production lasting only two years)

SHADOWS Timeline

- ✓ Submission of the Expression of Interest to the SPSC the 7 January 2022
- ✓ Submission of the Letter of Intent to the SPSC the 22 November 2022
- ✓ Submission of the Proposal to the SPSC the 18 August 2023
- ✓ Project presentation at the SPSC Open Session on September 5th 2023
- ✓ <u>https://indico.cern.ch/event/1303571/</u>
- ✓ Q&A session with the SPSC at the SPSC closed session on September 6th
- > October 31st: Submission to CDS and to the SPSC of the final version of the Proposal
- > 21-22 November: SPSC Recommendations about SHADOWS (and HIKE)
- > December: Final decision from the CERN Research Board.

Hence:

By Christmas this year we will know whether we are approved or not.

CSN1,	riunione d	i bilancio	a Napoli	11-15/09

uppo				silancio 202	C44						Nascondi Es	perimenti					
lich	Esperimento	MISS		CON	ALTRICONS	SEM	TRA	PUB	LIC-SW	MAN	INV	APP	SPSERVIZI	Parz	тот	Anti	tic
675.5	MRER	223.5	9.5	Ass 51 86.5	Ass 5.	Ass 53	Ass SJ	Ass SJ	Ass	5) Ass 5.	Ass 51	Ass 51	Ass 53	Ass 5	0 537		
6186.5	ATLAS	920.0	495.0	615.0 5.0		<u> </u>				1.5	20.0, 0.0	0.0, 00.0	425.5 923.0	1962.0 1423	0 3385	497	7.0
1271 0	BELLE2	584.5	58.5	85.5			2.0			8.0			420.0 920.0	680.0 278	5 958	4 0	0.0
853.0	BESIII	282.5	60.0	35.0 245.5	1.5		8.5		1.0	0.0	5.0	9.0 22.0	220.0	342.5 327	5 670		0.0
1458 5	CALC1-TIER1	202.0	00.0	55.0 245.5	1.0		0.0		1.0		0.0	0.0 ZZ.0		0.0 0	0 0		0.0
696.5	CMS	1178.0	668 5	727.0									529 5 1511 0	2434 5 2179	5 4614	1118	8.0
881 5	DUNE	192.5	97.0	131.0 170.0	41.0		21.5				61 5 100 0	977.0 7.0	45.0 80.0	1469.5 454	0 1923	5 0	0.0
556.0	FASE2 ATLAS	102.0	51.0	54 5 53 5	41.0		40 30			20	44.0 53.0	537.0	13.5 13.5	655.0 123	0 778		9.0
738.5	FASE2 CMS			56.0 71.5			4.0 0.0			2.0	5.5 11.0	1978.0	20 20	2041 5 88	5 2130		0.0
224 5	GMINUS2	40.5	40.5	10.5 40.0	2.0		4.0				0.0 11.0	1010.0	2.0 2.0	53.0 80	5 133		0.0
405.0	CAR US	92.5	52.5	31.0	6.0		13.0			12.0	35	475 50	40.0 30.0	242.0 91	0 333		0.0
40.0	GNITE	20.0	02.0	180.0 225.0	0.0		10.0		10	0		41.0. 0.0	40.0.00.0	200.0 235	0 435		0.0
0.0	KLOF	20.0		100.0 220.0						···				0.0 0	0 0		0.0
571.0	HC-b	560.0	301.5	154.0	i	<u> </u>	10.0				i		376.5 327.0	1090.5 638	5 1729		0.0
74.5	HCf	27.0	17.5	4.5			5.0						50 30	36.5 25	5 62		0.0
0.0	UXE	21.0					0.0						0.0 0.0	0.0 0	0 0		0.0
80.0	MEG	182.5	46.0	76.5							7.0	20.0		266.0 66	0 332		0.0
0.0	MUEDM	102.0	10.0	10.0								20.0		0.0 0	0 0/		0.0
351.0	MUONE	35.0	3.0	65.0 10.0	-		5.0					132 0 529 0		237.0 542	0 779		0.0
776.0	NA62	460.5	7.0	57.0			2.0		2.0			102.0 020.0	182.0	703.5 7	0 710		0.0
92.0	PADME	32.0	15.0	13.0 15.0	-				2.0				102.0	45.0 30	0 75		0.0
875.5	PMU2E	243.0	42.0	23.5 148.5	11.0		5.0				i	218.0	20.0	509.5 201	5 711		0.0
432.0	RD FCC	167.0	144.5	18.0 20.0			0.0				10.0	210.0	20.0	185.0 174	5 359	5 0	0.0
464.0	RD FLAVOUR			197.5 140.0			2.0				8.5 40.0	15.0		208.0 195	0 403		0.0
604 5		116.5	73.0	71.5 17.0							0.0 40.0	21.0		188.0 111	0 299	25	5.0
0.0	SELDOM TWOCRYST		10.0									21.0		0.0 0	0 0/	0 0	0.0
0.0	SHADOWS				i									0.0 0	0 0	0 0	0.0
527.5	SNDLHC	238.5		40.5								24.0	193.5	496.5 0	0 496	5 0	0.0
0.0	UA9													0.0 0	0 0/	0 0	0.0
0.0														0.0 0	0 0.	0 0	0.0
134.5 T	otale isperimenti	5596.02	2131.0	2733.0 1161.0	50.5 11.0		63.0 22.0		3.0 10	.0 27.5	156.5 222.5	3928.5709.0	1876.5 3153.0	14434.5 7419	5 21854.	0 1649	9.0
60 EV	1.05	44.0		24.0					1	20.0		50		50 Q E	0 621		
00.3 N		11.0	-	21.0						20.0		5.0		0.0 5.	03.0	1 0	1.0
58.0 5	HADOWS		24.0	34.0										0.0 58.	58.0	0).0
67.0 L	JA9	7.0	12.0	4.5				1		1	1		30.0	41.5 12.	0 53.5	0.	J.0

1111.0	Totale Esp. Dot.	169.0 92.5	56.5 77.5	5 5.0		2.0 12.0		1.0	56.5 5.	0 22.5 37.0	31.0 36.5	30.0	373.5 260.5 63	4.0 0.	.0 477.0
1946.0	Totale Dotazioni	797.5	403.0		46.0		51.0			608.5			1906.0 0.0 190	6.0 0.	.0 40.0
	Fondo Indiv.	314.0	50.0	0		a construction				50.0	92.0	100.0	60	6.0	
	6876.5 2223.5	3242.5 1238.	5 55.5 11.0	46.0	65.0 34.0	51.0	4.0 10.	0 84.0 5.	0 837.5 259.5	4051.5745.5	2006.5 3153.0	17320.0 7680.0	0.01640	020101 5	
45191.5TOTALE	9100.0	4481.0	66.5	6 46.0	99.0	51.0	14.	.0 89.	0 1097.0	4797.0	5159.5	25000.0	0.01049	.020191.5	