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Statistical Quantification of Discovery

1 Background

I am a statistician, not a physicist...

• I collaborate with astro, solar, and particle physicists on statistical methodology.

Today: Summarize statistical issues pertaining to discovery in physics.

1.1 Motivating Examples

Neutrino Oscillation

• Neutrino created as electron, muon or tau may later be measured with different flavor.

• Flavor probability varies periodically as neutrino travels; depends on several parameters.
....remember that I am not a neutrino physicsist

Mass Hierarchy ....ordering of the mass eigenstates

• We would like to compare the “normal hierarchy” (i.e, mass difference, ∆m2
32 > 0) with

the “inverted hierarchy” (i.e., ∆m2
32 < 0).

• Which is more consistent with data? Which is correct?

• Challenge: While |∆m2
32| is well constrained, the sign is degenerate with two other

parameters: θ23 or δCP.

CP-violation

• Is there evidence to counter assumption that δCP ∈ {0, π}, i.e., evidence for CP-violation?

• The current data is limited.

Bump Hunting (e.g., Higgs serach)

• Question: is there a bump above background or not?

• The location of the possible bump is unknown.

• What is the bump location if there is no bump? What does this mean?
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We return to these examples during the lectures.

• Discuss both philosophical and technical differences between the three examples.
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1.2 Outline of Statistical Methods Covered Statistical Quantification of Discovery

1.2 Outline of Statistical Methods Covered

There are two predominant statistical perspectives on how to formulate the question of Discovery.

Frequentist Model Selection: Suppose there were no new . What is the chance
that we would see data as extreme as this?

Higgs Search: .

• If there were no Higgs boson, what would be the chance that we would see a bump
at least this large?

• What is the chance that a random fluctuation in background would result in a bump
at least this large?

• This chance is larger if we consider a wider search region.

CP Violation: .

• If there is no CP-violation, what is the chance of seeing data as extreme or more
extreme than the data we have?

• “As extreme”: We must define a statistic that is small [large] if there is no CP-
violation but becomes larger [smaller] with increased CP-violation.

Mass Hierarchy: .

• The situation is more complicated because there is not default model.

Bayesian Model Selection: Give the data that we have observed, what is the probability of
the new ?

Higgs Search: Give the observed data, what is the probability that there is a Higgs boson?

CP Violation: Give the observed data, what is the probability of a CP-violation?

Mass Hierarchy: Give the observed data, what is the probability of the normal hierarchy?

Notes:

1. Bayesian discovery is conceptually easier.

2. There is a reversal in conditioning between frequency-based and Bayesian discovery.

• Frequency methods compute probabilities of data given a model (e.g., background
only, no Higgs).

• Bayesian methods compute the probability of the model given the data.

• Pr(A | B) may be quite different than Pr(B | A).

Example:
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1.3 Likelihood Based Statistical Methods Statistical Quantification of Discovery

3. Main challenges

• Do frequency method really answer the right question?

• Bayesian answers depend on the choice of prior distribution.

• The two perspectives may give seemingly contradictory results.

4. Because of this model selection remains controversial and challenging.

• Model selection is harder that parameter estimation, both conceptually and techni-
cally.

• This is particularly challenging because the science questions have a higher profile
and are generally more central.

Higgs Search: Compare the discovery of the Higgs boson to follow up studies that refine
the estimates of its mass. Which gets more press?

5. To understand these subtleties, we must first compare frequency-based and Bayesian pa-
rameter estimation.

1.3 Likelihood Based Statistical Methods

Example 1. Consider a single bin detector where the data is an event count and we wish to
estimate the source count rate per unit time, λ. (For simplicity we assume there is no background
contamination.) Denote the observed event count by y and suppose that

y ∼ Poisson(tλ),

where t is time.

Definition. The Likelihood Function: The likelihood function is the distribution function (for-
mally the probability density or probability mass function) of the data given the model parameters.

Generic notation: We denote the data by y, the parameter by θ, and the likelihood function by
L(θ | y), or more succinctly L(θ) Both y and θ may be multivariate (vectors); we use bold to
represent vectors.

In our example,

likelihood(λ | y) = e−tλ(tλ)y/y! ≡ L(λ | y)
log likelihood(λ | y) = −tλ+ y ln(tλ)− ln(y!)

Definition. Maximum Likelihood Estimate (MLE): The value of the unknown parameter that
maximizes the likelihood function (among the values in the range of scientifically feasible values).
We denote the generic MLE by θ̂MLE.

Example 1 (con’t). Returning to Example 1, it is easy to show that λ̂MLE = y/t. Below is
a plot of the likelihood function with t = 1 if we observe y = 3.
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The likelihood (solid line) and its normal approximation (dashed line).
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1.3 Likelihood Based Statistical Methods Statistical Quantification of Discovery

Notes:

• The normal approximation is the normal curve with the same mode and curvature at the
mode.

• The standard likelihood-based error bar is computed as the standard deviation of this
normal approximation. For a univariate parameter, the error bar is computed as

se(θ̂) = −
(

d2

dθ2
lnL(θ | y)

∣∣
θ=θ̂

)−1

.

• Under the the “central limit theorem” the likelihood and its normal approximation become
evermore similar for larger data sets.

• Given that likelihood based method condition “backwards”, what is the justification for
their use?

Simulation: (Example 1, con’t)

1. Suppose λ = 2 and t = 1. Repeat the experiment 1000 times and consider the distribution
of λ̂ = y/t.

2. Compare with Normal distribution with

• mean = E(y/t) = λt/t = λ and

• variance = Var(y/t) = λt/t2 = λ/t.

3. Repeat but with t = 100.

Results:
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1.3 Likelihood Based Statistical Methods Statistical Quantification of Discovery

Asymptotic Frequency Properties of the MLE: For large data sets (and univariate θ)
If θ is not on the boundary of its set of possible values, (among other “regularity conditions”)

1.

2. The interval

θ̂ ± includes θ % of the time.

(That is, θ̂ ± 1.96 se(θ̂) is an (asymptotic) 95% confidence interval for θ.)

Definition. Asymptotic Properties: Properties of an estimator or procedure that hold more and
more exactly as the size of the data grows.

Simulation: (Example 1, con’t) Now suppose

y ∼ Poisson
(
t(2 + λ)

)
,

i.e., we expect 2 counts due to background per unit time. It can be shown that under this model

the MLE is λ̂MLE = max
(
0, (y − 2)/t

)
. We repeat the simulation under this model, with λ = 0

(i.e., no source).

Results:
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But what if a parameter has no true value?
What happens if we fit/assume the wrong model?
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Asymptotic Frequency Properties of the MLE: For large data sets (and univariate θ)
If θ is not on the boundary of its set of possible values, (among other “regularity conditions”)

1.

θ̂MLE
approx∼ N

(
θ, se(θ̂)

)
2. The interval

θ̂ ± 1.96 se(θ̂) includes θ 95 % of the time.

(That is, θ̂ ± 1.96 se(θ̂) is an (asymptotic) 95% confidence interval for θ.)

Definition. Asymptotic Properties: Properties of an estimator or procedure that hold more and
more exactly as the size of the data grows.

Simulation: (Example 1, con’t) Now suppose

y ∼ Poisson
(
t(2 + λ)

)
,

i.e., we expect 2 counts due to background per unit time. It can be shown that under this model

the MLE is λ̂MLE = max
(
0, (y − 2)/t

)
. We repeat the simulation under this model, with λ = 0

(i.e., no source).

Results:
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1.4 Bayesian Statistical Methods Statistical Quantification of Discovery

1.4 Bayesian Statistical Methods

Bayesian methods are based completely on the concepts and tools of probability. That is, they
use probability density/mass functions, means, variances, and probability intervals. There is
no need for new structures such as the likelihood function, maximum likelihood estimates, or
confidence intervals. Bayesian statisticians accomplish this by assigning subjective probability
distributions to the unknown parameters that are the subject of statistical inference.

Example 2. Consider again a simple Poisson model: Y |λ ∼ Poisson(tλ) and let L(λ | y)
be the likelkhood function. We aim to infer what values of λ are most probable after having
observed y. We begin by using a probability distribution to describe our knowledge about likely
values of λ before observing y.

Definition. The prior distribution summarizes our state of knowledge before we observe the
data and is denoted p(θ).

Definition. The posterior distribution summarizes our state of knowledge after we observe the
data and is denoted p(θ | y).

We use the posterior distribution to infer what value of the parameter, θ are probable, after
having observed the data. y. For simplicity here we assume θ is univariate.

Theorem. (Bayes Theorem) Let y be a random vector and θ be random variable, with y rep-
resenting the data and θ the model parameter. The posterior distribution of θ is given by

p(θ | y) = p(y | θ)p(θ)
p(y)

∝ L(θ | y)p(θ),

where p(y | θ) = L(θ | y) is the model for the data given the parameter, p(θ) is the prior
distribution, and

p(y) =

∫ ∞

−∞
p(y | θ)p(θ)dθ

if θ is continuous and

p(y) =
∑

p(y | θ)p(θ)

if θ is discrete.

Bayesian Parameter Estimation: We can estimate the unknown parameter, θ, by its
posterior mean, E(θ | y), and describe uncertainty in this estimate with its posterior variance,

Var(θ | y), or its posterior standard deviation,
√
Var(θ | y).

Bayesian Interval Estimation: We can compute a posterior probability interval for Θ. (We
assume Θ is continuous, but similar definitions can be made if Θ is discrete.)

Definition. For any α ∈ [0, 1], a 100× (1− α)% posterior interval for the parameter, θ is any
interval I, such that ∫

I
p(θ | y)dθ = 1− α

Example 2 (con’t). Returning to the Example 2,

posterior(λ) ∝ Likelihood(λ) × prior(λ)

The posterior distribution combines past information with that contained in the and current
data.
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1.5 A Statistical Framework for Discovery Statistical Quantification of Discovery

Again supposing that y = 3, we can compare three different prior distributions:
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Notes:

1. For small samples the prior distribution can be quite influential.

2. Without its asymptotic properties, the MLE also has little justification for small samples.

3. The effect of the prior dissipates as the the size of the data grows. The posterior mean
and standard deviation enjoy essentially the same asymptotic frequency properties as the
MLE and se(θ̂).

4. For large data sets, Bayesian and Likelihood-based methods tend to give similar results.

1.5 A Statistical Framework for Discovery

Statistically, discovery is formulated in terms of “model testing” or “hypothesis testing”.

H0: The null hypothesis (e.g., no CP-violoation, δCP = 0 or no Higgs boson)

HA: The alternative hypothesis (e.g., CP-violation or there is a Higgs boson)

Without further evidence, H0 is presumed true.

• “Deciding” on HA means scientific discovery: new physics. (Higgs Boson or CP-violation)

Note. Sometimes there is no presumed model. For example in the mass hierarchy problem,
neither the normal nor the inverted hierarchy is a null-model. We may refer to Model Selection
rather than testing in such cases.

Errors.

Type-I: If we decide on HA when actually H0 is true, the result is a False Detection or False
Discovery. Statisticians refer to this as a Type-I Error.

Type-II: There is another type of error. If HA holds and we conclude there is insufficient
evidence to reject H0, the result is a missed detection. Statisticians refer to this as a
Type-II Error.

As we shall see, the choice of appropriate statistical approach depends on a mix of philo-
sophical and technical issues:

• Is there a presumed model? If not, what is meant by H0?

• Are there more than 2 possible models? How can the framework be generalized?

• Are the models nested. That is, is H0 a special case of HA?
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Statistical Quantification of Discovery

• Are there unknown parameters under H0? We call such parameters, nuisance parameters.

• Are there parameters that have no value under H0?

Example:

• Are the values of the parameter under H0 on the boundary of the set of possible values of
the parameter under HA?

Example:

• Bayesian vs. Frequentist methods.

2 Frequentist Hypothesis Testing

2.1 Neyman Pearson

Example 3. Consider again a single bin detector where the data is an event count. Now suppose
we wish to test for signal above background. Again denote the observed event count by y but
now suppose that

y ∼ Poisson(λB + λ),

where λB is the expected background count and λ is the expected source count. We wish to
choose between the two hypotheses

H0 : λ = 0 and HA : λ > 0

Question: Why is this the appropriate choice of H0 and HA?

Neyman-Pearson Framework for Model Testing: Wish to choose between H0 and HA.

• Assume H0 to be true unless we are overwhelmed by evidence to the contrary.

• Require a test statistic, T , with known distribution under H0 and power under HA.
Common choices for the test statistic include ∆χ2 or the likelihood ratio statistic.

• Compute a threshold T ⋆ that is (say) the smallest value such that

tail probability: Pr(T > T ⋆ | H0) ≤ α,

where α is the bound on the probability of falsely discovery, i.e., of falsely rejecting H0. α
is called the level of the test.

• If T > T ⋆ we conclude that there is sufficient evidence to reject H0.

• The power of the test is Pr(T > T ⋆ | HA) = β, i.e., the probability that we correctly reject
H0.
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2.2 Fisher’s P-value Statistical Quantification of Discovery

Example 3 (con’t). In Example 3, a simple choice of Test statistic is T = y. Suppose
λB = 10 and we wish to limit the probability of false detection to be less than 5%. Under H0,
T ∼ Poisson(10) and Pr(T > 15 | H0) = 1 − Pr(T ≤ 15 | H0) = 1 − 0.9513 = 0.0487, so we
reject H0 in favor of HA is y > 15.
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Notes:

1. Well-defined frequency properties: Bounded Pr(false detection).

2. There is no characterization of the strength of the evidence. You reject H0 if T > T ⋆ with
no distinction made if T exceeds T ⋆ by a mile or millimeter.

3. The test statistic can be difficult to find, especially when there are nuisance parameters.
What if λB where unknown in Example 3?

4. What happens if neither hypothesis holds? What do Type I/II errors mean then?

Example 3 (con’t). [power]. Suppose again λB = 10; we use the test statistic T = y; and
set the critical value (i.e., threshhold for rejecting H0) to T ⋆ = 15. The power of the test is

β = Pr(T > T ⋆ | HA) = Pr(T > 15 | λ)
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2.2 Fisher’s P-value

The Neyman-Pearson framework allows a decision between H0 and HA, but provides no measure
of the degree of support in the data for one hypothesis or the other.

Key Question: Is the current data plausible under the H0?
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2.2 Fisher’s P-value Statistical Quantification of Discovery

To quantify the degree of evidence, a p-value is often reported:

p-value = Pr(T ≥ T obs | H0).

The p-value is the most commonly used criterion for hypothesis testing in general and discovery
in physics.

Definition. A p-value is the probability under H0 that we would observe a value of the test
statistic as extreme or more extreme than the value we actually observed.

Example 3 (con’t). Suppose T obs = 9, what is the p-value? Or T obs = 19?

Pr
(
T ≥ 9 | H0

)
= 1− Pr

(
T ≤ 8 | H0

)
(see figure above)

Example 4. Consider the mass-hierarchy example and suppose we wish to compare

H0 : Normal hierarchy versus HA : Inverted hierarchy

Case 1

T(y)T(yobs)

H0 : NH H1 : IH

p−value

Case 2

T(y)T(yobs)

H0 : NH H1 : IH

p−value

The distribution of T (y) under H0 (blue) and under HA (red). The test statistic is more
powerful in Case 1 than in Case 2.

Notes:

1. This formulation assumes a test statistic, T , can be found whose distribution is completely
specified under H0. (There are no nuisance parameters.)

2. No alternative hypothesis is required for the p-value. Fisher originally intended that the
p-value be used for model checking rather than model selection.
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2.3 Likelihood Ratio Test and Standard Asymptotics Statistical Quantification of Discovery

2.3 Likelihood Ratio Test and Standard Asymptotics

A common and generally efficient choice of test statistic is the likelihood ratio test statistic.
Suppose we wish to compare

H0 : L0(θ | y) for θ ∈ Θ and

HA : LA(ϕ | y) for ϕ ∈ Φ.

Here Θ and Φ correspond to the sets of possible parameter values under the two models.

Definition. The likelihood ratio test statistic is defined as

TLRT(y) = −2 ln

(
maxθ∈Θ L0(θ | y)
maxϕ∈Φ LA(ϕ | y)

)
.

Example 5. In the Mass Hierarchy problem, the two models correspond to normal and inverted
hierarchy. In this case the parameters of the two models overlap, but neither model is a special
case of the other.

Suppose the model under H0 is a special case of the one under HA. In this case we can consider
a common likelihood function L(θ | y) where Θ is the the set of possible parameters and compare

H0 : θ ∈ Θ0 and

HA : θ ∈ Θ.

Here Θ0 is a subset of Θ.

Definition. We say the two models are nested if H0 is a special case of the general model.

If the models under comparison are nested, the likelihood ratio test statistic is written

TLRT(y) = −2 ln

(
maxθ∈Θ0 L(θ | y)
maxθ∈Θ L(θ | y)

)
.

Example 6. In the Higgs Search, if the size of the bump is treated as a parameter, are the two
models nested?

Example 7. In the CP-violation problem, if δCP is treated as a parameter to be fit, are the two
models nested?

Notes:

1. The likelihood ratio test is generally the go-to test statistic for statisticians.

2. Neyman-Pearson Lemma: If there are no unknown parameters under either H0 or HA,
the likelihood ratio test is the most powerful test for any bound on the probability of false
discovery / detection. This means that for any bound we choose on the probability of a
false discovery / detection, the likelihood ratio test is most likely to detect a true source.

Example 8. Suppose yi ∼ Poisson(λ) are an independent and identically distributed sample
of size n, and we wish to test

H0 : λ = 2 versus HA : λ ̸= 2.

It is easy to derive that λ̂MLE = ȳ = 1
n

∑n
i=1 yi and the likelihood ratio test statistic is

TLRT(y) = 2

(
−

n∑
i=1

yi + ln(ȳ)

n∑
i=1

yi + 2n− ln(2)

n∑
i=1

yi

)
.

To compute T ⋆ such that Pr(TLRT(y) > T ⋆ | H0) = α, we need to know (an approximate?)
distribution of TLRT when H0 is true.
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2.3 Likelihood Ratio Test and Standard Asymptotics Statistical Quantification of Discovery

Definition. The distribution of a test statistic when H0 is true is called its null distribuiton.

Theorem. Wilk’s Theorem: Suppose y = (y1, . . . , yn) is an independent and identically dis-
tributed sample with likelihood function L(θ | y), then under certain regularity conditions, TLRT(y)
converges to a chi-squared distribution as the sample size n goes to infinity. The degrees of free-
dom of this chi-square distribution is the differance between the number of free parameters under
H0 and under HA.

Simulation: Returning to Example 8,

1. Obtain a sample from the null distribution of the LRT statistics for n = 1.
For ℓ = 1, . . . , L, here with L = 10, 000.

(a) Sample a replicate data set,
ỹ(ℓ) ∼ p(ỹ | θ,H0).

(b) Compute the LRT statistic for data set ỹ(ℓ).

What is the distribution of the LRT statistics sampled from the null distribution?

Histogram of LRT

LRT statistic
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2. Obtain a sample from the null distribution of the LRT statistics for n = 1000.

Histogram of LRT

LRT statistic
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Regularity Conditions

Wilk’s theorem requieres a number of regularity conditions that do not always hold in examples
in physics.
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2.3 Likelihood Ratio Test and Standard Asymptotics Statistical Quantification of Discovery

1. The models must be nested.

2. None of the parameter values specified by H0 may be on the boundary of their possible
values under HA. (Mathematically we say Θ0 must be in the interior of Θ.)

3. All of the parameters must have values under H0.

4. The asymptotic null distribution of the MLE must be Gaussian.

Example 9. The Higgs search. Consider comparing the null hypothesis that yi ∼ Poisson(βi)
for i = 1, . . . , n, with the alternative hypothesis that

HA : yi ∼ Poisson(βi + µI{i = 20}), for i = 1, . . . , n,

where βi is the expected background count in bin i and µ is the size of the bump. (See plot.)

For simplicity we assume that

1. each βi is known,

2. the bump is contained completely in one bin,

3. and we know which bin it is that may contain the bump.
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Illustration of the Higgs model in Example 9.

The range of values for µ under HA is µ ≥ 0, whereas under the null hypothesis µ = 0. Because
the null value of µ in on the boundary, the standard asymptotic distribution for the LRT do not
hold.

The MLE µ̂MLE cannot be asymptotically normal with mean µ = 0 under H0. This can easily
be seen because

Pr(µ̂MLE ≥ 0 | H0) = 1.

Simply stated, µ̂MLE cannot be negative. The standard asymptotic distribution of the LRT
statistics depends on the normality of the MLE under H0. So the standard asymptotic distri-
bution of the LRT does not apply. In this case, the asymptotic distribution of the LRT statistic
is a mixture of χ2 random variables (see Section 2.4).
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2.4 When Standard Asymptotic Methods Fail Statistical Quantification of Discovery

Now consider comparing the same null hypothesis with the more general alternative hypothesis
that

HA : yi ∼ Poisson(βi + µI{i = m}), for i = 1, . . . , n,

Here we do not assume we know the location of the bump and fit m the index of the bin
that contains the bump. The situation here is more complicated. Under H0, µ = 0, but m is
undefined; m has no value under H0. In this case the LRT statistic has no known distribution.

Do the regularity conditions hold?

1. Models must be nested:

2. Parameter values specified under H0 may not be on the boundary of their parameter space.

3. All parameters must be defined under H0.

4. The asymptotic null distrubution of the MLE must be Gaussian.

Example 10. Mass hierarchy. Do the regularity conditions hold?

Example 11. CP-violation. Do the regularity conditions hold?

We return to methods that can be used when the regularity conditions fail in Section 2.4.

2.4 When Standard Asymptotic Methods Fail

When Wilk’s Theorem fails, we require other methods to compute / approximate

p-value = Pr
(
T (y) ≥ T (yobs) | H0

)
.

Specifically this requires other methods to approximate the null distribuiton of T (y).

2.4.1 Numerical Methods

The easiest method is to use numerically simulate from the null distribution of T (y). (Physicists
sometimes call this generating “toys”.)

Procedure:

1. Acquire a large sample of replicate data sets, of size L, under H0:

ỹ(ℓ) ∼ p(ỹ | θ,H0) for ℓ = 1, . . . , L.

2. Estimate the p-value by Monte Carlo:

p-value ≈ 1

L

L∑
ℓ=1

I
{
T (ỹ(ℓ)) > T (yobs)

}
.

Here T (yobs) is the value of the test statistic for the actual observed data.

17



2.4 When Standard Asymptotic Methods Fail Statistical Quantification of Discovery

Notes:

1. This procedure does not specify how nuisance parameters should be handled. How should
replicated data sets be sampled in Step 1 if the null model involves unknown parameters.

2. The standard strategy is to either fit the nuisance parameters or resample them accounting
for uncertainty in their fit.

3. We discuss a Bayesian strategy for handling nuisance parameters.

Posterior Predictive P-values:
In principle, if there are unknown parameters under H0, i.e., nuisance parameters, the p-value
depends on these parameters:

p-value(θ) = Pr(T (ỹ) > T (yobs) | θ,H0).

Here T (ỹ) is random; its distribution is generated by (1) generating replicate data sets under
the model

ỹ ∼ p(ỹ | θ,H0),

and (2) computing the test statistic for each replicate data set. Again, T (yobs) is the test statistic
evaluated with the observed data.

Question: How do we compute p-value(θ) if θ is unknown?

Definition. A posterior predictive p-value (or ppp-value) is the expected value of the p-value
under the (Bayesian) posterior distribution:

ppp-value =

∫
Pr(T (ỹ) > T (yobs) | θ,H0) p(θ | y,H0) dθ = Pr(T (ỹ) > T (yobs) | y,H0).

Procedure for Computing ppp-values:

1. Acquire a large sample of size L from the posterior distribution:

θ(ℓ) ∼ p(θ | y) for ℓ = 1, . . . , L.

2. Use the posterior sample to generate a sample of replicated data sets from

ỹ(ℓ) ∼ p(ỹ | θ(ℓ)) for ℓ = 1, . . . , L.

3. Estimate the ppp-value by Monte Carlo:

ppp-value ≈ 1

L

L∑
ℓ=1

I
{
T (ỹ(ℓ)) > T (yobs)

}
.

Example 12. The distribution of energy originating from an astronomical source is called its
spectrum and can be informative as to the physical processes at the source. A typical X-ray
source spectrum might consist of an extended smooth component known as a continuum and
one or more narrow features knows as spectral lines:

18



2.4 When Standard Asymptotic Methods Fail Statistical Quantification of Discovery

E = energy (keV)

Space-based instruments study X-ray spectra of astronomical sources via the count of photons
recorded in each of a large number or narrow energy bins. Suppose we wish to compare several
models for a stellar spectrum, each of which includes a simple power law continuum, αE−β. The
models may or may not include one spectral line and if there is a line its location may or may
not be known.

Model 0: Yi
iid∼ Poisson

(
αE−β

i

)
.

Model 1: Yi
iid∼ Poisson

(
αE−β

i + µI{i=m}

)
, with m known.

Model 2: Yi
iid∼ Poisson

(
αE−β

i + µI{i=m}

)
, with m unknown.

In Model 0 there is no spectral line. In Models 1 and 2 there is one spectral line, its location, m,
is fixed and known in Model 1 and fitted in Model 2. We treat Model 0 as the null hypothesis.1

Note:

1. If the spectral line’s location is known, all parameters have values under Model 0 but the
parameter space of Model 0 is on the boundary of the parameter space of Model 1.

2. If the spectral line’s location is unknown, not all parameters have values under Model 0.
The parameter space of Model 0 is on the boundary of the parameter space of Model 1.

3. The standard asymptotic distribution of the LRT does not apply for testing Model 0
against Model 1 or for testing Model 0 against Model 2. (See Example 9.)

We also consider one more model that includes an absorption feature. This means that there is a
narrow range of energy with fewer expected photons then under Model 0. (This is the opposite
of an emission line, where there are excess photons in a narrow range of energy.)

Model 3: Yi
iid∼ Poisson

(
αE−β

i − µI{i=m}

)
We use ppp-values with the LRT statistics to

(a) compare Model 0 with Model 1

(b) compare Model 0 with Model 2

(c) compare Model 0 with Model 3

1This is a somewhat simplified version of Models 2 and 3 compared to what was used in the simulation study.
See Protossov, et al., 2002, ApJ for details.
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2.4 When Standard Asymptotic Methods Fail Statistical Quantification of Discovery

The null distributions of each of the three LRT statistic appear below. The black curves are the
standard asymptotic χ2 distributions under Wilk’s Theorem; the vertical lines represent nominal
5% cut offs; and the given percentages are the actual false positive rates corresponding to the
5% cut off points. The results show that the null distribution derived under Wilk’s Theorem
may be conservative or anti-conservative.

Asymptotic theory may be conservative or anti-conservative.
(Vertical lines mark nominal 5% cutoffs; percents are actual false positive rates when using nominal cutoffs.)

reference distribution of the LRT against these two alterna-
tive models. The nominal !2 distributions with 1 and 2
degrees of freedom are plotted on the histograms and clearly
do not suffice. The false positive rates are 2.6% and 1.5% in
the nominal 5% tests, respectively. In this case, we expect
the LRT to understate the evidence for an emission line.
Correcting the false positive rate should enable us to detect
weak lines that would be missed by blind application of the
LRT.

Simulation 2: testing for a simple absorption line.—
Although the LRT is conservative in both of the tests in sim-
ulation 1, this is not always the case. This can be seen in a
second simulation in which we consider a simplified absorp-
tion line. Although multiplicative model components such
as an absorption line do not correspond to testing for a com-
ponent in a finite mixture, the LRT still does not apply if the
null model is on the boundary of the parameter space; such
is the case with absorption lines. In this simulation we
ignore background contamination, instrument response,
and binning. We simulate 1000 data sets each with 100 pho-
tons from an exponential continuum, and fit the following
twomodels:

Model 1.—Exponential continuum.
Model 2.—Exponential continuum plus a two-parameter

absorption line, where the fitted absorption probability is
constant across the line that has a fixed width but a fitted
center.

Again, we computed the LRT statistic for each of the 1000
simulated data sets and plotted the results in the final panel
of Figure 1. Clearly, the LRT does not follow its nominal
reference distribution (!2 with 2 degrees of freedom) even
with this simplified absorption line model; the false positive
rate is 31.5% for the nominal 5% test. That is, use of the
nominal reference distribution would result in over 6 times
more false line detections than expected.

4. BAYESIAN MODEL CHECKING

Although some theoretical progress on the asymptotic
distribution of TLRT(x) when !0 is on the boundary of !
has been made (e.g., by Chernoff 1954 and specifically for
finite mixtures by Lindsay 1995), extending such results to a
realistic highly structured spectral model would require
sophisticated mathematical analysis (see Lindsay 1995 for a
simple exception when only ! is fitted in eq. [3]). In this sec-
tion we pursue a mathematically simpler method based on
Bayesian model checking known as posterior predictive
p-values (Meng 1994; Gelman, Meng, & Stern 1996). As we
shall see, this Bayesian solution is simpler and far more gen-
erally applicable than the asymptotic arguments required
for satisfactory behavior of the LRT.

Posterior predictive p-values are but one of many meth-
ods for model checking and selection that may be useful in
astrophysics. Our aim here is not to provide a complete cat-
alog of such methods but rather to provide practical details
of one method that we believe is especially promising and
little known in astrophysics. In x 4.3 we provide a brief com-
parison with several other Bayesian methods.

4.1. The Posterior Predictive p-Value

The central difficulty with the LRT and the F-test in this
setting is that their reference distributions are unknown
even asymptotically. Moreover, the distributions likely
depend on such things as the particular shape of the contin-
uum, the number of lines, and their profiles and strengths.
Thus, it is difficult to obtain any general results regarding
such reference distributions even via simulation. The
method of posterior predictive p-values uses information
about the spectrum being analyzed to calibrate the LRT sta-
tistic (or any other test statistic) for each particular measure-
ment. In the simulations described in x 3.2, we simulated
data sets ~xxðtÞ using a fixed value of (", #, $) and observed the

0 2 4 6

0
.0

0
.5

1
.0

1
.5

LRT statistic

p
.d

.f
.

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(a)

2.6%

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

LRT statistic

p
.d

.f
.

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(b)

1.5%

0 5 10 15

0
.0

0
.0

5
0
.1

0
0
.1

5
0
.2

0

LRT statistic
p
.d

.f
.

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(c)

31.5%

Fig. 1.—Null distribution of the LRT test statistic. The histograms illustrate the simulated null distribution of the LRT statistic in three scenarios and
should be compared with nominal !2 distributions, which are also plotted. As detailed in x 3.2, the histograms corresponds to (a) testing for a narrow emission
line with fixed location, (b) testing for a wide emission line with fitted location, and (c) testing for an absorption line. The vertical lines show the nominal cutoff
for a test with a 5% false positive rate; note that the actual false positive rates vary greatly at 2.6%, 1.5%, and 31.5%. The label on the y-axis stands for the prob-
ability density function.
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2.4.2 Non-standard Asymptotics

Simulating toys may be infeasible when a 4σ or 5σ detection criterion is required. Here we list
some of methods that might be used.

Non-nested Models. When there are no unknown parameters, the central limit theorem
(CLT) can be used to approximate the null distribution of the LRT statistic. Suppose we wish
to compare

H0: y = (y1, . . . , yn) are independently distributed according to the probability density f0(y).

HA: y = (y1, . . . , yn) are independently distributed according to the probability density f1(y).

Because there are no unknown parameters, we can write the LRT statistic as

TLRT(y) = −2 ln

(∏n
i=1 f0(yi)∏n
i=1 f1(yi)

)
= −2

n∑
i=1

ln
(
f0(yi)− f1(yi)

)
.

Because this is the sum of an independent random sample, the CLT implies that for large n,

TLRT(y)
approx∼ N

(
mean = −2nE

(
f0(yi)− f1(yi) | H0

)
, variance = 4nVar

(
f0(yi)− f1(yi) | H0

))
These two quantities, E

(
f0(yi) − f1(yi) | H0

)
, and Var

(
f0(yi) − f1(yi) | H0

)
, can easily be

approximated with a moderate sample under H0. See Cousins et al. (2005, J. High Energy
Phys., 11, 046) for details

When H0 is on the boundary of the set of possible parameters. A generalization of
Wilk’s theorem applies when H0 is on the boundary of the set of possible parameters. This
generalization is known as Chernoff’s Theorem.
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Example 13. Suppose we model y ∼ N(µ, 1), where µ must be non-negative, i.e., µ ≥ 0 and
we wish to test

H0: µ = 0

HA: µ ≥ 0.

Because the null distribution of the MLE of µ cannot be centered on its true value, 0 under H0,
Wilk’s theorem fails. Instead, half the time the MLE of µ is zero (when y ≤ 0), and the LRT
statistic is equal to zero. The other half the time the standard theory holds. Thus the LRT
statistic is equal to 0 half the time and is a χ2

1 variable the other half of the time. This has the
effect of halving the p-values relative to thoes computed under Wilk’s Theorem.

Chernoff’s Theorem generalizes this example, e.g., when multiple parameters are on the bound-
ary of the parameter space under H0.

When there is a parameter that has no value under H0. This case is summarized in a
separate set of slides called “A Case Study: Bump Hunting”.

3 Bayesian Model Selection

3.1 Bayes Factors and Posterior Probabilities

For Bayesian model selection, in principle, we can compute the posterior distribution of each
model under consideration. Let π0 be the prior probability of the null model. Using Bayes
Theorem,

Pr(H0 | y) =
p(y | H0)π0

p(y | H0)π0 + p(y | HA)(1− π0)
.

The marginal distribution of the data under each model is given by the respective prior predictive
distributions,

p(y | H0) =

∫
p(y | θ,H0)p(θ | H0)dθ and p(y | HA) =

∫
p(y | θ,HA)p(θ | HA)dθ

The posterior odds of H0 is

p(H0 | y)
p(HA | y)

=
p(y | H0)π0
p(y | HA)πA

=
π0

1− π0
× p(y | H0)

p(y | HA)
,

where π0/(1− π0) is the prior odds of H0 and the

Bayes Factor =
p(y | H0)

p(y | HA)
.

Notes:

1. Bayes Factors are often used in place of posterior odds to avoid specifying the prior odds.

2. Like the LRT statistic, the Bayes Factor is a relative probability and avoids the oddities of
tail probabilities.

3. Unlike with the LRT the models under comparison need not be nested.

4. Unlike hypothesis testing, there is no inherent asymmetry between the models under con-
sideration. We may decide stronger evidence is required for us to chose the “alternative
model” than for us to stick with the “null model”, but no such distinction between the
two models is required. For this reason we typically do not us the “null” and “alternative”
terminology.
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5. I typically use the log Bayes Factor so that the two models are treated more symmetrically.

6. Jeffreys (1961, “The Theory of Probability”) proposed a scale to qualify the degree of
evidence for one of the models that is supported by a given value of a Bayes Factor:

Bayes Factor ln10(Bayes Factor) Degree of Evidence

> 100 > 2 Overwhelming evidence for H0

30 to 100 1.5 to 2 Very Strong evidence for H0

10 to 30 1 to 1.5 Strong evidence for H0

3 to 10 0.5 to 1 Substantial evidence for H0

1
3 to 3 −0.5 to 0.5 Barely worth mentioning
1
10 to 1

3 −0.5 to −1 Substantial evidence for HA

1
30 to 1

10 −1 to −1.5 Strong evidence for HA

1
100 to 1

30 -1.5 to −2 Very Strong evidence for HA

< 1
100 < −2 Overwhelming evidence for HA

7. How do we interpret the posterior odds or the Bayes Factor if neither model holds??

3.2 The Problem with P-values

Although the use of p-values in model selection is endemic, they can be quite misleading.

Example 14. (Jeffrey-Lindley Paradox) Suppose we wish to repeatedly compare a null hypoth-
esis with an alternative hypothesis. We happen to know that H0 is actually true with probability
π0 and the alternative is true with probability 1−π0. To be precise, suppose we wish to compare
H0 : Y ∼ N(0, 1) with the HA : Y ∼ N(3.4, 1) and compute a p-value based on the test statistic
T = Y .

Suppose we observe Y and compute a p-value and find it to be significant with 0.05 > p-value >
0.04. We can reject H0 in favor of the alternative.

Question: Given that 0.05 > p-value > 0.04, how often is H0 true?

Because we know H0 is true with probability π0, we can compute

Pr(H0 | 0.05 > p-value > 0.04) = (⋆)

Compare this with the p-value of 0.05!!
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Question: What does this mean? What have we learned from the p-value?

Note: By adjusting the mean under the alternative we can make (⋆) either much less than or
much greater than π0. How can we interpret the p-value for model selection??

3.3 The Problem with Prior Distributions

Example 15. Suppose y | µ ∼ N(µ, 1) with prior distribution µ ∼ N(0, τ2). It is easy to derive
the marginal distribution of y (often called the prior predictive distribution):

y ∼ N(0, 1 + τ2).

To see this, note that the joint distribution of y and µ is

p(y, µ) ∝ exp

{
−1

2

(
(y − µ)2 + µ2/τ2

)}
,

so (y, µ) are bivariate normal and y is marginally normal with E(y) = E
[
E(y | µ)

]
= E(µ) = 0

and Var(y) = E
[
Var(y | µ)

]
+Var

[
E(y | µ)

]
= E(1) + Var(µ) = 1 + τ2.

The marginal distribution of y is plotted for several choices of τ2 below:

Note: The value of p(y) depends on τ2. Because Bayes Factors and posterior probabilities of
HA use prior predictive distributions, they must be used with great care. The choice of prior
distribution must be carefully considered and must always be reported.

Now suppose we wish to compare

H0 : y ∼ N(0, 1) with HA : y | µ ∼ N(µ, 1),

where µ ∼ N(0, τ2). The marginal distributions of y under the two models are

H0 : y ∼ N(0, 1) and HA : y ∼ N(µ, 1 + τ2),
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and

Bayes Factor =

1√
2π

exp

{
−y2

2

}
1√

2π(1 + τ2)
exp

{
− y2

2(1 + τ2)

} =
√

1 + τ2 exp

{
− y2τ2

2(1 + τ2)

}

If we observe y = 3, the Bayes Factor can vary dramatically depending on our choice of prior,
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Note. Unfortunately, Bayes Factors depend heavily on the choice of prior distribution.

3.4 A Case Study: Bump Hunting

The Case Study is presented in a separate set of slides.
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