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Probability Function A function f (x) that gives a rule for assigning a
probability P(x) to outcome x is called a probability function.

In the previous lecture we talked about outcomes that can be modeled
with n-tuples, (z1, · · · , zn) with elements drawn from the set of natural
numbers N = {0, 1, · · · ,ℵ0}.

But outcomes can also be modeled using n-tuples with elements
drawn from the set of real numbers R = (−c, c)1.

If x is from N, then the probability function f (x) is called a probability
mass function (pmf).

Notice that f (x) is a probability.

1We typically use the symbol∞ instead of c. Georg Cantor (1845 - 1918),
inventor of set theory, proved the astonishing theorem c = 2ℵ0 .
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Probability Mass Function If x is from N, then the probability
function f (x) is called a probability mass function (pmf).

Probability Density Function If x is from R, then the probability
function f (x) is called a probability density function (pdf) and is often
written with a lower case letter.

Notice that unlike a pmf f (x) is not a probability.

To get a probability, the pdf must be integrated over an interval whose
size is at least as large as an infinitesimal dx2. More usefully we
compute

P =

∫ x2

x1
f (X) dX.

The functions are often referred to as probability distributions.

2An infinitely small non-zero number!
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Random Variables
Formal books on statistics distinguish between a random variable X
denoted with an upper case letter from its outcomes x denoted by
lower case letters.

However, most physicists typically do not make this distinction.

Probability Distribution Function: F(x) = P(X ≤ x).

Note that if x ∈ R then

f (x) =
∂F
∂x

F(x) is also known as the cumulative distribution function.
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Several quantities are used to characterize probability distributions.
Here are a few.

Moments
The rth moment µr(a) about a of a probability distribution with
probability function f (x) is defined by3

µr(a) =

∫
Sx

(x− a)r f (x) dx,

where Sx is the domain of f (x).
µ = µ1(0) is called the mean and is a measure of the location of the
function f (x); V(x) = µ2(µ) is called the variance and σ =

√
V is the

standard deviation, which is a measure of the width of f (x).

3For discrete distributions, we replace the integral by a sum.
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Quantile Function As noted earlier, the function

F(x) = P(X ≤ x) =

∫
X≤x

f (X) dX

is called the cumulative distribution function (cdf) of f (x). (Here
distinguishing between X and x turns out to be helpful!) The function
x = Q(P) that returns x given P = F(x) is called the quantile function
and x is called the P-quantile of f (x).

Sometimes it is convenient to distinguish between the left cdf
FL(x) ≡ F(x) and the right cdf defined by

FR(x) =

∫
X≥x

f (X) dX.
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Covariance, Correlation, Independence The covariance of random
variables x and y with probability function f (x, y) is defined by

Cov(x, y) =

∫
Sx

∫
Sy

(x− µx) (y− µy) f (x, y) dx dy.

It is a measure of the correlation between the variables x and y.

If the probability function f (x, y) can be written as f (x, y) = f (x) f (y)
then variables x and y are said to be independent in which case
Cov(x, y) = 0.

Note however that, in general, Cov(x, y) = 0 does not imply
independence.
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Example (2.1 The Binomial Distribution)
Consider m proton-proton collisions at the LHC and suppose we have
r successes, say the creation of a Higgs boson. However, we are able
to record only n < m collision events of which k ≤ n are successes.

Problem What is the probability P(k, n|r,m) to get k successes and
n− k failures in n trials given that they are drawn at random from a
“box" called the LHC containing r unknown successful collisions and
m− r unknown failures?
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Assumptions
1 The order of proton-proton collisions is irrelevant.

2 Every sample of collisions of size n is equally probable.

This problem is exactly the same as drawing k red balls and n− k blue
balls at random from a box with r red balls and m− r blue balls.

And, like the LHC, the drawing of red and blue balls, that is, Higgs
boson and non-Higgs boson events, is done without replacement.
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Example (2.1 The Binomial Distribution)
Solution Plan:

1 Determine the number of ways T to get n collisions from m
collisions regardless of whether a collision is a success or a
failure.

2 Determine the number of ways S to get exactly k successful
collisions from r successful collisions.

3 Determine the number of ways F to get exactly n− k failed
collisions from m− r failed collisions.

4 Since successes and failures are assumed to be independent, the
number of samples of size n with k successes and n− k failures is
N = S× F.

5 Therefore, P(k, n|r,m) = S× F/T .
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1 How many samples T of n collisions can be drawn from m
collisions? (

m
n

)
2 How many samples S of k successes can be drawn from r

successes? (
r
k

)
3 How many samples F of n− k failures can be drawn from m− r

failures? (
m− r
n− k

)
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P(k, n|r,m) =
S F
T
,

=

(
r
k

)(
m− r
n− k

)
/

(
m
n

)

This probability can be rewritten as

P(k, n|r,m) =

(
n
k

)
f (k, n, r,m),

where f (k, n, r,m) =
r!

(r − k)!

(m− r)!
(m− r − n + k)!

/
m!

(m− n)!
.
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We now ask what is the probability of k, n irrespective of r,m?

This requires that we consider all values of r and m that are possible a
priori and sum the probability P(k, n|r,m) weighted by the probability
P(r,m) of r and m.

That is, we need to compute the sum

P(k, n) =
∑
r,m

P(k, n|r,m) P(r,m).

The elimination of quantities like r and m that are not of current
interest is an example of a common procedure in probability theory
called marginalization.

We can already see a potential problem. It is far from clear what we
should put for P(r,m). But let’s nevertheless continue and see where
this leads.
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P(k, n) =
∑
r,m

P(k, n|r,m) P(r,m).

Let’s rewrite the expression above in terms of the unknown relative
frequency of success, z = r/m:

P(k, n) =
∑
z,m

P(k, n|zm,m) P(zm,m),

=

(
n
k

)∑
z,m

f (k, n, z,m) P(zm,m) from slide 15.

At the LHC, m, the number of proton-proton collisions, is huge.

Therefore, let’s consider the idealization m→∞ while keeping k and
n fixed.
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P(k, n) =

(
n
k

)∑
z,m

f (k, n, z,m) P(zm,m),

Exercise 2.1
show that f (k, n, z,m)→ zk(1− z)n−k as m→∞.
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What about the probabilities P(zm,m)?

To see what happens, write P(k, n) as

P(k, n)→
∑

z

∑
m

(
n
k

)
zk(1− z)n−k P(zm,m) with z = r/m,

=
∑

z

(
n
k

)
zk(1− z)n−k

∑
m

P(zm,m),

Harrison B. Prosper Probability 19 / 37
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P(k, n) =
∑

z

(
n
k

)
zk(1− z)n−k

∑
m

P(zm,m),

As m→∞, the sum converges to an integral and we obtain:

Bruno de Finetti’s Representation Theorem

P(k, n) =

∫ 1

0
binomial(k, n, z)π(z) dz, where

binomial(k, n, z) =

(
n
k

)
zk(1− z)n−k and

π(z) = lim
m→∞

∑
m

P(zm,m).

π(z) is an example of a prior density.
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The Binomial Distribution What are
we to make of the prior density
π(z)?

We ask our friendly theorist for a
prediction of the relative frequency
of Higgs boson production at the
LHC. She predicts that it is p.

We might consider modeling that
prediction by setting
π(z) = δ(z− p) in de Finetti’s
theorem. If we do so, we obtain the
binomial distribution

P(k, n) = binomial(k, n, p)

Harrison B. Prosper Probability 21 / 37
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The Poisson Distribution
There are many situations in which the count n in the binomial
distribution

binomial(k, n, p) =

(
n
k

)
pk(1− p)n−k,

is large and the probability p is small. For example, at 13 TeV only
one in 1010 proton-proton collisions leads to a Higgs boson event.
Consider, therefore, the limit n→∞ and p→ 0 while a = pn and k
remain fixed.

Exercise 2.2
Show that in this limit the binomial distribution becomes the Poisson
distribution, Poisson(k, a) = ak exp(−a)/k!

Harrison B. Prosper Probability 22 / 37
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The Poisson Distribution

The more fundamental definition of a Poisson distribution is via a
stochastic model.

Suppose that at time t + dt we have recorded k counts and that in the
time interval (t, t + dt) only two things can happen:

no event occurred during (t, t + dt) or
one event occurred during (t, t + dt).

We further suppose that the probability to get an event during the time
interval (t, t + dt) is proportional to its size dt.

We can now assign probabilities.

Harrison B. Prosper Probability 23 / 37
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The Poisson Distribution
Here are the transition probabilities that define the Poisson model:

Pk(t + dt) = probability that the count is k at time t + dt
Pk(t) = probability that the count is k at time t

Pk−1(t) = probability that the count is k − 1 at time t
qdt = probability to record 1 event during t + dt

1− qdt = probability to record 0 events during t + dt

In principle, q could depend on time.
Using the probability rules, we can write

Pk(t + dt) = (1− qdt) Pk(t) + qdt Pk−1(t),

or noting that dPk(t)/dt = [Pk(t + dt)− Pk(t)]/dt,
dPk

dt
= −q Pk + q Pk−1.

Harrison B. Prosper Probability 24 / 37
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The Poisson Distribution
Equations such as

dPk

dt
= −q Pk + q Pk−1,

can be solved recursively.

Exercise 2.3
Show that

Pk(t) = Poisson(k, a) =
e−aak

k!
,

where the mean count is a = qt. Also, show that Vark = a, an
important fact about the Poisson distribution that justifies the
statement that for a mean count a we would expect counts k to
fluctuate by roughly ±

√
a.
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A widely used model in particle physics, astronomy, and cosmology is
the multi-Poisson model defined by

P(k|a) =

M∏
m=1

akm
m e−am

km!
.

This is the standard statistical model for binned data when the counts
are conditionally independent.

In particle physics, analyses that use this model are sometimes
referred to as shape analyses.
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Exercise 2.4
Show that

P(k|a) = Poisson(k, a)multinomial(k1, · · · , km, p1, · · · , pm) where

k =

M∑
m=1

km, a =

M∑
m=1

am, pm =
am

a
,

M∑
m=1

pm = 1,

and the multinomial distribution is given by

multinomial(k1, · · · , km, p1, · · · , pm) ≡
(

k
k1, · · · , km

) M∏
m=1

pkm
m

When bin counts are large, or when they have a large dynamic range
typical of steeply falling spectra, it is sometimes convenient to drop
the Poisson term and rely solely on the multinomial.
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Gaussian Distribution The Gaussian, or normal, distribution is the
most important distribution in statistics. Its probability density
function is

Gauss(x, µ, σ) =
e−

1
2 (x−µ)

2/σ2

σ
√
2π

,

with mean µ and variance σ2. The other oft-used properties are the
probability contents of various intervals. Let z = (x− µ)/σ. Then

P(z ∈ [−1.00, 1.00]) = 0.683
P(z ∈ [−1.64, 1.64]) = 0.900
P(z ∈ [−1.96, 1.96]) = 0.950
P(z ∈ [−2.58, 2.58]) = 0.990
P(z ∈ [−3.29, 3.29]) = 0.999

P(z ∈ [5.00,∞)) = 2.7× 10−7
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Gaussian Distribution A bumper sticker: All sensible probability
distributions approach a Gaussian in some limit. The precise
statement is the central limit theorem.
Example (2.2 The Central Limit Theorem)

Let t = 1
n
∑n

i=1 xi, where xi is sampled from p(x, µ, σ) and p is any
probability density with mean µ and finite standard deviation σ.
Define z =

√
n(t − µ)/σ. The mean of the probability density of z,

f (z), is 0 and its standard deviation is 1. The central limit theorem
states

lim
n→∞

∫
X≤z

f (X) dX =

∫ z

−∞
Gauss(X, 0, 1) dX .

When measurement errors can be modeled as the sum of a large
number of random contributions, we expect, and this is borne out in
practice, the probability density of these errors to be roughly Gaussian.
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χ2 Distribution Write z = (x− µ)/σ, where x ∼ Gaussian(µ, σ) (∼
means “is sampled from” and consider the sum

t =

n∑
i=1

z2i .

What is the pdf of t? Given the probability density function,
p(z1, · · · , zn), the pdf of t is given by the random variable theorem4

p(t) =

∫
dz1 · · ·

∫
dzn δ (t − g(z1, · · · , zn)) p(z1, · · · , zn) ,

where g(z1, · · · , zn) is the function, such as the sum above, that maps
z1 to zn to t. The δ-function imposes the constraint t = g(z1, · · · , zn).

4A theorem for physicists in the theory of random variables, D. Gillespie, Am. J.
of Phys. 51, 520 (1983).
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χ2 Distribution First note that p(z1, · · · , zn) = p(z1)p(z2) · · · p(zn) and

δ(x) =
1
2π

∫ ∞
−∞

eiωx dω.

(Burn this formula into your brain...it’s one of the most useful in
physics and statistics!) Putting together the pieces and shuffling the
order of integration, we get

p(t) =
1
2π

∫ ∞
−∞

dω eiωt
n∏

j=1

∫ ∞
−∞

e−iωz2j p(zj) dzj,

=
1
2π

∫ ∞
−∞

dω
eiωt

(2i)n/2
1

(ω − i/2)n/2 .
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χ2 Distribution Writing m = n/2, and performing the integral for
integer m, we find

1
2πi

∫ ∞
−∞

dω
ieiωt

(2i)m
1

(ω − i/2)m =
1

Γ(m)

tm−1 e−t/2

2m .

This result remains valid for non-integral values of m. Therefore, the
pdf of the sum of the square of n standardized Gaussian random
variables is (t = χ2)

p(t) =
1

Γ(n/2)

tn/2−1 e−t/2

2n/2 , mean n, variance 2n .
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Cauchy Distribution Let x, y ∼ Gaussian(0, 1) ≡ g(x). What is the
pdf of t = y/x?

It is given by

p(t) =

∫ ∞
−∞

dx
∫ ∞
−∞

dy δ(t − y/x) g(x) g(y),

=
1
2π

∫ ∞
−∞

dx
∫ ∞
−∞

dy δ(t − y/x) e−
1
2 (x

2+y2).

This integral is begging us to use polar coordinates, y = r sin θ,
x = r cos θ and dx dy→ r dr dθ, so that we can write

p(t) =
1
2π

(∫ ∞
0

e−
1
2 r2 r dr

)∫ 2π

0
δ(t − tan θ) dθ,

=
1
2π

∫ 2π

0
δ(t − tan θ) dθ.
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At first glance, the odd looking beast

p(t) =
1
2π

∫ 2π

0
δ(t − tan θ) dθ,

looks tricky! But, recall that δ(h(θ)) = δ(θ− θ0)/|dh/dθ|θ0 , where θ0
is the root of h(θ) = t − tan θ = 0 and 1/|dh/dθ| = cos2 θ. In fact,
on the domain [0, 2π], there are two roots separated by π. Therefore,

p(t) =
1
2π

∫ 2π

0
δ(θ − θ0) cos2 θ + δ(θ − θ0 − π) cos2(θ) dθ,

=
1
π

cos2 θ0.

Since tan θ0 = t, cos θ0 = 1/
√
1 + t2, which yields the Cauchy pdf,

p(t) =
1

π(1 + t2)
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Summary
According to Kolmogorov, probabilities are functions defined on
suitable sets, have range [0, 1], and follow simple rules.
The two most common interpretations are: relative frequency
and degree of belief.
If it is possible to decompose experimental outcomes (basically,
a set of n-tuples) into outcomes considered equally likely, then
the probability of an outcome may be taken to be the ratio of the
number of favorable outcomes to that of all possible outcomes.
More generally, we use probability functions; probability mass
functions for discrete distributions and probability densities for
continuous ones.

Examples/exercises at:
https://github.com/hbprosper/INFN-SOS/
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