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Probability is common sense reduced to calculation

Laplace
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Consider the statements:
The odds of drawing four aces in a row from a standard deck of
cards (i.e., 52 cards, 4 ranks) is 1 in 270,725.

The chance that a proton-proton collision at 13 TeV creates a
Higgs boson is 10−10.

It is highly likely that William Shakespeare is the author of the
inspired insult:

You blocks, you stones, you worse than senseless things!

Each statement is about probability. Since probability is the
foundational concept in statistics and almost all of contemporary
machine learning, it is worth spending a bit of time learning the
basics.

So let’s get started!
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The Stanford Encyclopedia of Philosophy1 lists six interpretations of
probability of which the most common are:

1 classical If n things can happen, called A, out of m possible
things then P(A) = n/m.

2 relative frequency If n things can happen out of m possible
things, then P(A) = n/m in the limit n,m→∞. This is the basis
of the frequentist approach to statistics.

3 degree of belief A measure of the strength of belief of a rational
agent in the truth of A. This is the basis of the Bayesian approach
to statistics.

We start with a famous problem in probability.

1https://plato.stanford.edu/entries/probability-interpret/
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Example (1.1 A Gambling Man)

Which of the following is the more probable, getting at least
1. one 6 in 4 throws of a single 6-sided die, or
2. a double 6 in 24 throws of two 6-sided dice?

Antoine Gombaud (le chevalier de Méré,
1607-1684) brought this problem to the
attention of Blaise Pascal who in 1654 began
a correspondence with Pierre de Fermat
(1601-1665).

Their work together with earlier work by the
Italian mathematician Gerolamo Cardano
(1501 - 1576) are the first serious attempt to
create a theory of probability.

Blaise Pascal (1623 - 1662)
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Example (1.1 A Gambling Man)
What is the probability to get at least

1. one 6 in 4 throws of a single 6-sided die?

Let p be the probability to obtain ≥ 1 six in 4 throws of a die and q the
probability to get none. We refer to the outcome of each throw as an
elementary outcome and the outcomes of the 4 throws of the die as an
experimental outcome.

Now to the solution.
Alas, there is none!
Unless that is one is prepared to make a sufficient number
of assumptions to render the problem well-posed. Moreover,
because different people may make different assumptions,
there may be different answers to the same problem!
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Assumptions
1 The two experimental outcomes, either 0 sixes or ≥ 1 sixes are

exhaustive — i.e., they are the only possible outcomes.
2 There are 6 distinct elementary outcomes2.
3 The elementary outcomes are equally probable.
4 The probability of the elementary outcomes is the same for every

throw and every throw is independent of the others.
Assumption 1 =⇒ p + q = 1.
Assumption 2 =⇒ there are 5 ways not to get a six.
Assumption 3 =⇒ the probability of each of the elementary
outcomes is 1/6, therefore, given assumption 2 the probability not to
get a six is 5/6.
Assumption 4 =⇒ the probability not to get a six in 4 throws of the
die is q = (5/6)× (5/6)× (5/6)× (5/6). Therefore, p = 1− (5/6)4.

2From which the experimental outcomes are constructed.
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Another way to approach de Méré’s problem is by counting outcomes.
Strategy

Consider outcomes that are assumed to be equally probable;
count the total number of possible outcomes, that is, determine
the cardinality (size) of the sample space;
count the number of desired outcomes
and take the ratio of the two counts as the probability of the
desired outcome.

The outcome of the experiment can be represented by the 4-tuple
(z1, z2, z3, z4), where zi ∈ {1, 2, 3, 4, 5, 6}. The total number of
4-tuples, that is, experimental outcomes, is 6× 6× 6× 6. The total
number of outcomes without a six is 5× 5× 5× 5, therefore, the
number of outcomes with a six is 64 − 54. Consequently, assuming
that each experimental outcome is equally probable, the probability of
the desired outcome is p = (64 − 54)/64 = 1− (5/6)4.
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Example (1.2 The Birthday Problem)
A crowd of people is randomly assembled. How large must the crowd
be so that the chance of finding ≥ two people with the same birthday
is ≥ 50%?

Assumptions
1 There are 365 possible birthdays (ignoring leap years).
2 Every birthday is equally probable.

Consider a crowd of size n. The outcome of an experiment — the
random assembling of a crowd — can be modeled as an n-tuple,
(z1, . . . , zn), where zi ∈ {1, . . . , 365}.
Let M be the cardinality of the set of n-tuples, the number of possible
crowds, and N the cardinality of n-tuples with ≥ 1 duplicate entries.
As in the previous example, it is easier to count the number of n-tuples
K with no duplicates and then compute the desired probability using
p = N/M = (M − K)/M assuming n-tuples are equally probable.
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M – What is the cardinality of the sample space? Each slot in an
n-tuple can be filled in 365 ways. Therefore, there are M = 365n
n-tuples in Ω.3

K – What is the cardinality of the set with no duplicate birthdays? The
1st slot can be filled in 365 ways. Since duplicates are not allowed, the
2nd slot can be filled in 365− 1 ways, the 3rd in 365− 2 ways, and so
on. So K = 365× 364× · · · ×(365− (n− 1)) = 365!/(365− n)!.

Therefore, the probability of at least one duplicate birthday is

p = (M − K)/M = [365n − 365!/(365− n)!]/365n

= 1− 364
365
× 363

365
× · · · × (365− n + 1)

365
≥ 0.50.

3This is akin to sampling with replacement from a box with 365 distinguishable
items.
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Permutations
How many ways can n items be arranged in a row with k slots? The
first slot can be filled in n ways, the 2nd in (n− 1) ways, the third in
(n− 2) ways and so on until the last slot is reached, which can be
filled in n− k + 1 ways. This yields n!/(n− k)! arrangements. When
k = n we get n! permutations.

Combinations
For k items there are k! permutations consisting of rearrangements of
the same items in the k slots. If the order of the items is irrelevant
(perhaps because the items are indistinguishable) then the number of
distinct arrangements is smaller by k!, that is, the number of
arrangements is

n!

(n− k)! k!
≡
(
n
k

)
.

This is called the number of combinations.
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Example (1.3 Partitions)
A partition divides objects into groups. Here is an examplea.

12 undergraduate students and 4 graduate students are randomly
divided into 4 groups of 4 students. What is the probability that each
group includes a graduate student?
Assumptions

1 Every partition of the students is equally probable.
2 The order of the students within a group is irrelevant.

Note: If the order of the students within groups were relevant, there
would be 16! ways to arrange the students.

aDimitri P. Bertsekas and John N. Tsitsiklis, Introduction to probability, MIT,
ISBN 978-1-886529-23-6
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Example (1.3 Partitions)
Assumptions

1 Every partition of the students is equally probable.
2 The order of the students within a group is irrelevant.

But Assumption 2 implies that every one of the 4! arrangements of
students within a group is equivalent. So 16! overcounts the number
of partitions by 4!4.

Therefore, the number of distinct partitions for which the order of
students within each group is irrelevant, that is, the cardinality M of
the sample space, is

M =
16!

4! 4! 4! 4!
.
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Example (1.3 Partitions)
Assumptions

1 Every partition of the students is equally probable.
2 The order of the students within a group is irrelevant.

We now need the number of partitions K with a graduate student in
each group. Given this count, the desired probability, p = K/M,
follows from Assumption 1.
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Exercise 1.1
Compute K then compute the probability that each group contains a
graduate student.
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In 1933, Andrey Kolmogorov published a highly influential book
entitled Foundations of the Theory of Probability in which he
developed the theory of probability starting from

1 the axioms of Boolean algebra
2 and axioms he introduced.

We first consider the axioms of Boolean algebra, then those of
Kolmogorov.
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A Boolean algebra is the 4-tuple (B, +, •, )̄ comprising a collection
of sets B that includes the special sets ∅ and Ω and the operations OR
(+), AND (•), and NOT (̄ ).

Axioms of Boolean Algebra (Huntington)
For all (∀) A, B, C ∈ B:

A + B = B + A (1)
A + (BC) = (A + B)(A + C)(2)

A + ∅ = A (3)
A + Ā = Ω (4)

AB = BA (5)
A(B + C) = AB + AC (6)

AΩ = A (7)
AĀ = ∅ (8)

With a slight abuse of notation, we’ll use 0 as a synonym for ∅ and 1
for Ω.
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We also assume the “meta” axiom (A) = A and that we can make
assignments, e.g., A = B.

Here are a few useful lemmas and theorems:

A + A = A
A + 1 = 1

A0 = 0
AA = A

(A + B) + C = A + (B + C)

0̄ = 1
1̄ = 0

A + AB = A
A(A + B) = A

(AB)C = A(BC)

De Morgan’s Laws

A + B = Ā B̄
AB = Ā + B̄
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Lemma (1)
A + A = A

Proof.

A + (BC) = (A + B)(A + C) (axiom 2)

A + (CB) = (A + B)(A + C) (axiom 5)

A + (AĀ) = (A + Ā)(A + A) let C = A,B = Ā
A + 0 = 1(A + A) (axioms 8, 4), (0)→ 0, (1)→ 1

A = 1(A + A) (axiom 3)

A = A + A (axioms 6, 5, 7)
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Lemma (2)
A + 1 = 1

Proof.

A + (BC) = (A + B)(A + C) (axiom 2)

A + (B1) = (A + B)(A + 1) let C = 1
A + B = (A + B)(A + 1) (axiom 7), (B)→ B
A + Ā = (A + Ā)(A + 1) B = Ā

1 = 1(A + 1) (axiom 4), (1)→ 1
1 = A + 1 (axioms 6, 5, 7)
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Exercise 1.2
Prove

A0 = 0,
A + AB = A,

A(A + B) = A.

Justify every step with one or more axioms including the meta axiom
(A)→ A.
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Kolmogorov Axioms
Let Ω be a set of elementary events E and S a collection of subsets of
Ω, called events, including the empty set ∅ and the set Ω. Probability
P is a real number assigned to all events A,B ∈ S such that

P(A) ≥ 0 (9)
P(Ω) = 1 (10)

P(A + B) = P(A) + P(B) ∀AB = ∅ (11)

If AB = ∅, A and B are said to be mutually exclusive.
Here are a few basic theorems that can be derived from the two sets of
axioms, Eqs. (1 – 11):

P(∅) = 0
P(A + B) = P(A) + P(B)− P(AB)

P(A1 + · · ·+ An) = P(A1) + · · ·P(An) ∀AiBj = ∅, i 6= j.
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Lemma (3)
P(∅) = 0

Proof.
The lemma A∅ = ∅ implies Ω∅ = ∅, that is, the startling conclusion
that events Ω and ∅ are mutually exclusive! Therefore,

P(Ω + ∅) = P(Ω) + P(∅) (axiom 11)

P(Ω) = P(Ω) + P(∅) (axiom 3)

1 = 1 + P(∅) (axiom 10)

∴ P(∅) = 0.
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Exercise 1.3
Prove

P(A) + P(Ā) = 1,
P(A + B) = P(A) + P(B)− P(AB).

Justify every step with one or more axioms.
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Conditional Probability
Consider events A and B. The conditional probability of A given B,
written as P(A|B) and assuming P(B) > 0, is defined by

P(A|B) =
P(AB)

P(B)
. (12)

This definition implies

P(B|A) =
P(BA)

P(A)
,

provided that P(A) > 0. Note that BA = AB implies P(BA) = P(AB).
Therefore, we arrive at
Bayes’ Theorem

P(B|A) =
P(A|B)P(B)

P(A)
. (13)
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Example (1.4 Two Dice)
Suppose that an elementary event consists of rolling two dice. The
outcome can be modeled as a 2-tuple (z1, z2) with
zi ∈ {1, 2, 3, 4, 5, 6}. Let Ω be the set of all possible outcomes whose
cardinality is |Ω| = 36. The probability associated with Ω is P(Ω) = 1
(axiom 9). If every elementary outcome is equally likely, then the
probability of event E is P(E) = |E|/|Ω| where |E| is the cardinality
of E and where the event E is an element of the power set Sa of Ω.
Example: The power set of Ω = {A,B,C} contains the sets

{} {A,B,C}
{A} {B} {C}

{A,B} {A,C} {B,C}
aThe set of all subsets including ∅ and Ω with cardinality 2n.
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Example (1.4 Two Dice)
Consider the two events

A = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)} and
B = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}

∈ S. What is the probability, P(A|B), of A given B?
A is the event in which each die yields an even number.
B is the event in which the two numbers sum to 8.

What is the operational meaning of P(A|B) = P(AB)/P(B)?

It tells us to restrict the set of elementary events to those in event B. In
effect, B assumes the rôle of Ω, but with fewer possibilities. Then,
determine the fraction of the events in B that are also in A, that is, in
the event AB.
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The probabilities of the events
A, B, and AB given our
assumptionsl are:

P(A) = 9/36
P(B) = 5/36

P(AB) = 3/36

Therefore,

P(A|B) = P(AB)/P(B),

= (3/36)/(5/36),

= 3/5.

Ω
"

#

"#

A = {(2, 2), (2, 4), (2, 6),

(4, 2), (4, 4), (4, 6),

(6, 2), (6, 4), (6, 6)}

B = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}

AB = {(2, 6), (4, 4), (6, 2)}
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Example (1.5 Is he doomed?)
In 2016 a man returned to Italy from a trip to the United States. Just to
be sure, he asked his doctor to test him for Ebola!

The test result was positive (+). Should he have worried?

Here are a few pertinent facts:
1 During the 2014 - 2016 Ebola outbreak in West Africa, 4 cases of

Ebola infection were reported in the United States.
2 At the time, according to World Health Organization (WHO)

there was a test that correctly identified 92% of people with
Ebola and correctly identified 85% who are Ebola free.
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Example (1.5 Is he doomed?)
Consider the following mutually exclusive events and associated
probabilities:

event D = You are Diseased
event H = You are Healthy
P(+|D) = 0.92 P(D) = 4/320, 000, 000
P(+|H) = 0.15 P(H) = 1− P(D)
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Example (1.5 Is he doomed?)
Bayes’ theorem P(B|A) = P(A|B)P(B)/P(A) can be generalized to

P(Bi|A) =
P(A|Bi)P(Bi)∑
i P(A|Bi)P(Bi)

,
∑
i
Bi = 1,

for mutually exclusive and exhaustive events Bi. For this problem, we
can write

P(D|+) =
P(+|D)P(D)

P(+|D)P(D) + P(+|H)P(H)
≈ P(+|D)

P(+|H)
P(D)

≈ 1/13, 000, 000.

Our conclusion? No he was not doomed! Just exceedingly cautious! A
priori our cautious friend would have had a 10 times higher chance of
drowning in his hotel bathtub in the US than catching Ebola in 2016!
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The modern theory of probability defines the latter as a measure
that satisfies the Kolmogorov axioms.

However, if a problem can be broken down into outcomes that
are judged to be equally probable, then the classical approach to
probability can be used. This typically involves subtle
combinatorial reasoning.

But to be useful probability must be interpreted.

The two most common interpretations are: relative frequency
and degree of belief.
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