



### **Systematics Uncertainties in Small-scale Experiments**

Francesco Renga INFN Roma

## Disclaimer

- Small-scale experiments -> Single-purpose experiments
  - e.g. Muon g-2 experiment, ~ 200 authors
- Technical aspects already covered in previous lectures, I will concentrate on practical applications
  - A very biased selection of experimental examples, mostly from muon and QED precision physics
- Not intended as a review of physics results
  - you could find incomplete references, out-of-date results, etc.

# Outline

- General aspects of systematic uncertainties in singlepurpose experiments
  - precision measurements
  - rare event searches
- Inclusion of systematics in confidence interval computations
- (Very biased) collection of relevant examples

### Generalities

# Single-purpose experiments

- Most single-purpose experiments can be classified into two categories:
  - 1) highly accurate measurements of particles properties
  - 2) searches for rare processes (rare decays, interactions of elusive particles)
- Besides accumulating statistics, high sensitivity is achieved through high precision (extremely good resolutions, extremely high background rejection) and/or high accuracy (no bias in measurements and background estimates)

PHYSICAL REVIEW LETTERS 131, 161802 (2023)

Editors' Suggestion

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

Measurement based on the rate of e<sup>+</sup> from μ<sup>+</sup> decays, above a given energy threshold (2.5% e<sup>+</sup> energy resolution)

| PHYSICAL REVIEW LETTERS 131, 161802 (2023) |  |
|--------------------------------------------|--|
|--------------------------------------------|--|

#### Editors' Suggestion

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

Measurement based on the rate of e<sup>+</sup> from μ<sup>+</sup> decays, above a given energy threshold (2.5% e<sup>+</sup> energy resolution)

| Quantity                                                                      | Correction (ppb) | Uncertainty (ppb) |
|-------------------------------------------------------------------------------|------------------|-------------------|
| $\omega_a^m$ (statistical)<br>$\omega_a^m$ (systematic)                       |                  | 201<br>25         |
| $C_e C_p$                                                                     | 451<br>170       | 32<br>10          |
| $C_{pa}$                                                                      | -27              | 13                |
| $C_{dd}$<br>$C_{ml}$                                                          | 0                | 3                 |
| $f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle$ |                  | 46                |
| $B_k B_q$                                                                     | -21<br>-21       | 20                |
| $\mu'_p(34.7^{\circ})/\mu_e$                                                  |                  | 11                |
| $m_{\mu}/m_e$<br>$g_e/2$                                                      |                  | 22<br>0           |
| Total systematic for $\mathcal{R}'_{\mu}$                                     |                  | 70                |
| Total external parameters<br>Total for $a_{\mu}$                              | 622              | 25<br>215         |

| PHYSICAL REVIEW LETTERS 131, 161802 (2023) |  |
|--------------------------------------------|--|
|--------------------------------------------|--|

#### Editors' Suggestion

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

Measurement based on the rate of e<sup>+</sup> from μ<sup>+</sup> decays, above a given energy threshold (2.5% e<sup>+</sup> energy resolution)

| Quantity                                                                                                                                                                   | Correction (ppb)                                          | Uncertainty (ppb)    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------|--|
| $\omega_a^m$ (statistical)<br>$\omega_a^m$ (systematic)                                                                                                                    |                                                           | 201<br>25            |  |
| $C_e \\ C_p \\ C_{pa} \\ C_{ma}$                                                                                                                                           | 451<br>170<br>-27<br>-15                                  | 32<br>10<br>13<br>17 |  |
| $C_{ml} C_{ml} f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle \\B_k \\B \\B \\B \\B \\B \\C $ | $ \begin{array}{c} 10 \\ 0 \\ \\ -21 \\ -21 \end{array} $ | 3<br>46<br>13<br>20  |  |
| $\mu'_{p}(34.7^{\circ})/\mu_{e}$<br>$m_{\mu}/m_{e}$<br>$g_{e}/2$                                                                                                           | ····<br>····                                              | 11<br>22<br>0        |  |
| Total systematic for $\mathcal{R}'_{\mu}$<br>Total external parameters<br>Total for $a_{\mu}$                                                                              | ····<br>···<br>622                                        | 70<br>25<br>215      |  |



**Upper Limit** based on the discrimination of 2-body vs. 3-body kinematics with extremely precise measurements (e.g. **0.2%** e<sup>+</sup> energy resolution)

| DIIVCICAT       | DEVIEW | IETTEDC | 121       | 161000 / | (2022) |
|-----------------|--------|---------|-----------|----------|--------|
| PHYSICAL        | KEVIEW | LETTERS | 1.31.     | 101802 ( | 20231  |
| I II I SICI III |        |         | <b></b> , | 101002 ( | (2020) |

### **Editors' Suggestion**

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

Measurement based on the rate of e<sup>+</sup> from μ<sup>+</sup> decays, above a given energy threshold (2.5% e<sup>+</sup> energy resolution)

| Quantity                                                                      | Correction (pp | b) Uncertainty (ppb) |
|-------------------------------------------------------------------------------|----------------|----------------------|
| $\omega_a^m$ (statistical)<br>$\omega_a^m$ (systematic)                       |                | 201<br>25            |
| $C_e$                                                                         | 451            | 32                   |
| $C_p$                                                                         | 170            | 10                   |
| $C_{pa}$                                                                      | -27            | 13                   |
| $C_{dd}$                                                                      | -15            | 17                   |
| $C_{ml}$                                                                      | 0              | 3                    |
| $f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle$ |                | 46                   |
| $B_k$                                                                         | -21            | 13                   |
| $B_q$                                                                         | -21            | 20                   |
| $\mu_p'(34.7^{\circ})/\mu_e$                                                  |                | 11                   |
| $m_{\mu}/m_e$                                                                 |                | 22                   |
| $g_e/2$                                                                       |                | 0                    |
| Total systematic for $\mathcal{R}'_{\mu}$                                     |                | 70                   |
| Total external parameters                                                     |                | 25                   |
| Total for $a_{\mu}$                                                           | 622            | 215                  |

| Parameter                      | Impact on limit |
|--------------------------------|-----------------|
| $\phi_{e\gamma}$ uncertainty   | 1.1%            |
| $E_{\gamma}$ uncertainty       | 0.9%            |
| $\theta_{e\gamma}$ uncertainty | 0.7%            |
| Normalization uncertainty      | 0.6~%           |
| $t_{e\gamma}$ uncertainty      | 0.1%            |
| $E_e$ uncertainty              | 0.1%            |
| RDC uncertainty                | < 0.1 %         |

| Eur. Phys. J. C (2024) 84:216<br>https://doi.org/10.1140/epjc/s10052-024-12416-2                | THE EUROPEAN<br>PHYSICAL JOURNAL C |
|-------------------------------------------------------------------------------------------------|------------------------------------|
| Regular Article - Experimental Physics                                                          |                                    |
| A search for $\mu^+ \rightarrow e^+ \gamma$ with the fire<br>experiment<br>MEG II Collaboration | st dataset of the MEG II           |

**Upper Limit** based on the discrimination of 2-body vs. 3-body kinematics with extremely precise measurements (e.g. **0.2%** e<sup>+</sup> energy resolution)

- Let's suppose to search for a rare process, looking for a peak over the background in a known position of a distribution
  - high sensitivity through high precision



- Let's suppose to search for a rare process, looking for a peak over the background in a known position of a distribution
  - high sensitivity through high precision
  - the measurement has to be also highly accurate (no relevant bias)



 In general-purpose experiments, many non-rare physics processes can be used to calibrate the measurements and remove biases



| Source                                       |      | Impact [MeV] |
|----------------------------------------------|------|--------------|
| Photon energy scale                          |      | 83           |
| $Z \rightarrow e^+e^-$ calibration           |      | 59           |
| $E_{\rm T}$ -dependent electron energy scale |      | 44           |
| $e^{\pm} \rightarrow \gamma$ extrapolation   |      | 30           |
| Conversion modelling                         |      | 24           |
| Signal-background interference               |      | 26           |
| Resolution                                   | 1    | 15           |
| Background model                             |      | 14           |
| Selection of the diphoton production ve      | rtex | 5            |
| Signal model                                 |      | 1            |
| Total                                        |      | 90           |



- Single-purpose experiments typically have extreme resolution (i.e. need for extreme accuracy) and a scarcity of physics processes to be used for calibrations
  - dedicated tools need to be developed

## Rare events with high-precision - the MEG case

- Single-purpose experiments typically have extreme resolution (i.e. need for extreme accuracy) and a scarcity of physics processes to be used for calibrations
  - dedicated tools need to be developed

In the MEG experiment, where a muon beam is used to search for  $\mu \rightarrow e\gamma$ , a profusion of calibration tools has been developed, including a **dedicated Cockroft-Walton accelerator** and a  $\pi^{-}(p, n) \pi^{0}$ **experiment** with the only purpose of calibrating the photon energy reconstruction.

٠



Systematic Uncertainties for High Accuracy

High Accuracy for zero tests

 $\Delta \stackrel{?}{=} 0$ 

e.g. particles EDMs

$$\begin{split} \Delta_{meas} &= k\Delta + \delta \quad \text{with } k = 1 \pm \sigma_k, \, \delta = 0 \pm \sigma_\delta \\ \Rightarrow & \sigma_{\Delta}^{syst} = \frac{\sigma_k}{k} \Delta + \sigma_\delta \sim \sigma_\delta \end{split}$$

- Additive uncertainties dominate over multiplicative uncertainties

# Systematic Uncertainties for High Accuracy

High Accuracy for non-zero measurements

e.g. particles MDMs, coupling constants

- multiplicative uncertainties are also important
- comparison with SI units is critical —> a metrology problem



Measured dimensional quantities need to be calibrated against SI standards with << ppm accuracy

# Systematic Uncertainties in Rare Event Searches

### Rare event searches through event patterns

- rare event searches (rare decays, dark matter, etc.) where background rejection is mostly achieved through particle identification, vetos, event topology, etc.
- dominant systematic uncertainties typically from the control of the background rejection efficiency



# Systematic Uncertainties in Rare Event Searches

### Rare event searches through precision

- rare event searches (e.g. rare decays) where the precise measurement of some observable (e.g. kinematics) is required to discriminate signal and background
- high precision requires also high accuracy, which can be only achieved with dedicated tools



# A ognuno il suo (Each to their own)

MEG vs. TWIST

# Measurement of parameters of the e+ energy spectrum in $\mu^+$ decays



# Measurement of e<sup>+</sup> energy spectrum for the search of $\mu^+ \rightarrow e^+ \gamma$



Very accurate knowledge of the magnetic field is necessary to measure the spectrum parameters Magnetic field adjusted from data, exploiting the theoretical knowledge of the Michel spectrum

# The role of Monte Carlo simulations

- The extremely high resolutions and accuracies of single-purpose experiments pose strong challenges to Monte Carlo simulations
- Additionally, for rare event searches, MC productions resulting in sufficient statistics of reconstructed background events are computationally unachievable or unreliable
  - e.g. MEG II 2021 data

| Potential background events    | ~ 10 <sup>12</sup>  |
|--------------------------------|---------------------|
| After the trigger              | 2 x 10 <sup>7</sup> |
| In the analysis region         | 66                  |
| Within $1\sigma$ to the signal | < 1                 |

# The role of Monte Carlo simulations

 The extremely high resolutions and accuracies of single-purpose experir

Addition
 sufficion
 compo

e.g

The use of Monte Carlo simulations is typically very limited and, when MC inputs are unavoidable, the related systematic uncertainties are large

ting in

| Potential background events    | ~ 1012              |
|--------------------------------|---------------------|
| After the trigger              | 2 x 10 <sup>7</sup> |
| In the analysis region         | 66                  |
| Within $1\sigma$ to the signal | < 1                 |

### Confidence intervals and systematics

 In FC, the confidence belt is built using the likelihood ratio test statistics, defined as:

$$\mathscr{R}(\mathbf{p}) = \frac{\mathscr{L}(\mathbf{p})}{\mathscr{L}(\hat{\mathbf{p}})}$$

**p** : set of parameters

 $\hat{\mathbf{p}}$  : set of parameters maximizing the likelihood (i.e. fitted value)

- Given a set of values of the parameters  $\mathbf{p}$ , the expected distribution of  $\mathscr{R}$  is computed
- When the experiment is performed, the value of  $\mathscr{R}$  is computed for different hypothetical sets of **p**:
  - a set of **p** is included in a confidence interval at C.L. = 1 α if more than a fraction α of the experiments is expected to give a larger *R*(**p**) than data

### Dealing with physical limits on a parameter

• For rare event searches ( $p = N_{sig}$ ), the so-called "conditioning" is also included to properly treat the physical constraint  $N_{sig} > 0$ :

$$\mathcal{R} = \begin{cases} \frac{\mathcal{L}(N_{\text{sig}})}{\mathcal{L}(N_{\text{sig,best}})} & \text{if } N_{\text{sib,best}} \ge 0\\ \frac{\mathcal{L}(N_{\text{sig}})}{\mathcal{L}(0)} & \text{if } N_{\text{sib,best}} < 0 \end{cases}$$

- The FC approach requires to evaluate the expected distribution of  $\mathscr{R}(\mathbf{p})$
- Typically obtained by generating pseudo-experiments (toy Monte Carlo exp.) according to the expected PDFs

- Let's consider the case of:
  - a single variable x
  - a gaussian signal ( $\mu = 0, \sigma = 3$ )
  - a flat background of 1000 events in x ∈ [-20,20]



Distribution of R from toy MCs generated with different <Nsig>





90% C.L. threshold







# Multi-dimensional case

- The original FC problem (neutrino oscillation parameters)
- Counting experiment:
  - the observable is the number of countings nobs (Poisson PDF)
  - there is an expected number of background events, n<sub>bkg</sub>
  - for each point in the 2D space, there is an expected number of signal events, n<sub>sig</sub>
  - for each point, the R distribution is derived from toy MCs with Poisson distribution
  - R from data is compared to the R distribution in toy MCs

 $\mathcal{R}(\Delta m^2, \sin^2(2\theta)) = \frac{\text{Poisson}(n_{\text{obs}}; n_{\text{sig}} + n_{\text{bkg}})}{\text{Poisson}(n_{\text{obs}}; n_{\text{sig,best}} + n_{\text{bkg}})}$ 

with  $n_{\text{sig,best}} > 0$ 



### Multi-dimensional case



- Coverage guaranteed for each pair of true (N<sub>sig</sub>, M)
  - no need of look-elsewhere corrections

### Multi-dimensional case



- Coverage guaranteed for each pair of true (N<sub>sig</sub>, M)
  - no need of look-elsewhere corrections

- The FC approach requires to evaluate the expected distribution of  $\mathscr{R}(\mathbf{p})$
- Typically obtained by generating pseudo-experiments (toy Monte Carlo exp.) according to the expected PDFs
- CAVEAT: can be computationally heavy for multidimensional parameter space, complex likelihoods and very small p-values:
  - for a  $5\sigma$  test, need to generate ~  $10^9$  toy MC experiments

### Inclusion of systematics

- For the inclusion of systematics, the most popular approaches are:
  - semi-bayesian approach (Highland-Cousins): the likelihood is integrated over the nuisance parameters before applying the desired statistical approach

e.g. likelihood for poisson-distributed yields, integrated over a gaussian uncertainty on the expected background *b* 

$$q(n)_{s+b} = \frac{1}{\sqrt{2\pi\sigma_b}} \int_0^\infty p(n)_{s+b'} e^{-(b-b')^2/2\sigma_b^2} db'$$
- For the inclusion of systematics, the most popular approaches are:
  - semi-bayesian approach (Highland-Cousins): the likelihood is integrated over the nuisance parameters before applying the desired statistical approach

e.g. likelihood for poisson-distributed yields, integrated over gaussian uncertainties on the expected background b and signal efficiency  $\epsilon$ 

$$q(n)_{s+b} = \frac{1}{2\pi\sigma_b\sigma_\epsilon} \int_0^\infty \int_0^\infty p(n)_{b'+\epsilon's}$$
$$\times e^{-(b-b')^2/2\sigma_b^2} e^{-(1-\epsilon')^2/2\sigma_\epsilon^2} db' d\epsilon'$$

- For the inclusion of systematics, the most popular approaches are:
  - profile likelihood ratio: the likelihood is maximized with respect to the nuisance parameters when building the likelihood ratio:

 $\mathscr{L}(\mathbf{p}, \mathbf{q}) = P(\text{data} | \mathbf{p}, \mathbf{q})P(\mathbf{q})$ 

- For the inclusion of systematics, the most popular approaches are:
  - profile likelihood ratio: the likelihood is maximized with respect to the nuisance parameters when building the likelihood ratio:
     External constraint: PDF (e.g. gaussian)

$$\mathscr{L}(\mathbf{p},\mathbf{q}) = P(\text{data} | \mathbf{p},\mathbf{q}) P(\mathbf{q})$$

External constraint: PDF (e.g. gaussian) representing the uncertainty on the nuisance parameters

- For the inclusion of systematics, the most popular approaches are:
  - profile likelihood ratio: the likelihood is maximized with respect to the nuisance parameters when building the likelihood ratio:

 $\mathcal{L}(\mathbf{p}, \mathbf{q}) = P(\text{data} | \mathbf{p}, \mathbf{q})P(\mathbf{q})$ 

$$\mathscr{R}(\mathbf{p}) = \frac{\mathscr{L}(\mathbf{p}, \hat{\mathbf{q}})}{\mathscr{L}(\hat{\mathbf{p}}, \hat{\mathbf{q}})}$$

- For the inclusion of systematics, the most popular approaches are:
  - profile likelihood ratio: the likelihood is maximized with respect to the nuisance parameters when building the likelihood ratio:

 $\mathscr{L}(\mathbf{p}, \mathbf{q}) = P(\text{data} | \mathbf{p}, \mathbf{q})P(\mathbf{q})$ 

Likelihood maximized over **q** for fixed **p** 

$$\mathscr{R}(\mathbf{p}) = \frac{\mathscr{L}(\mathbf{p}, \hat{\mathbf{q}})}{\mathscr{L}(\hat{\mathbf{p}}, \hat{\mathbf{q}})}$$

Likelihood maximized over **p** and **q** 

- For the inclusion of systematics, the most popular approaches are:
  - profile likelihood ratio: the likelihood is maximized with respect to the nuisance parameters when building the likelihood ratio:

 $\mathscr{L}(N_{\text{sig}}, \mathbf{p}) = P(\text{data} | N_{\text{sig}}, \mathbf{p})P(\mathbf{p})$ 

$$\mathcal{R} = \frac{\text{Poisson}(n_{\text{obs}}; n_{\text{sig}} + n_{\text{bkg}})P(n_{\text{bkg}})}{\text{Poisson}(n_{\text{obs}}; n_{\text{sig,best}} + n_{\text{bkg,best}})P(n_{\text{bkg,best}})}$$

- For the inclusion of systematics, the most popular approaches are:
  - profile likelihood ratio: the likelihood is maximized with respect to the nuisance parameters when building the likelihood ratio:

$$\begin{aligned} \mathscr{L}(N_{\text{sig}}, \mathbf{p}) &= P(\text{data} \mid N_{\text{sig}}, \mathbf{p}) P(\mathbf{p}) \\ \mathcal{R} &= \begin{cases} \frac{\mathcal{L}(N_{\text{sig}}, \hat{\mathbf{p}}(N_{sig}))}{\mathcal{L}(\hat{N}_{\text{sig}}, \hat{\mathbf{p}})} & \text{if } N_{\text{sig,best}} \ge 0 \\ \frac{\mathcal{L}(N_{\text{sig}}, \hat{\mathbf{p}}(N_{sig}))}{\mathcal{L}(0, \hat{\mathbf{p}}(0))} & \text{if } N_{\text{sig,best}} < 0 \end{cases} \end{aligned}$$

- For the inclusion of systematics, the most popular approaches are:
  - profile likelihood ratio: the likelihood is maximized with respect to the nuisance parameters when building the likelihood ratio:

Set of nuisance parameters

$$\begin{aligned} \mathscr{L}(N_{\mathrm{sig}},\mathbf{p}) &= P(\mathrm{data} \,|\, N_{\mathrm{sig}},\mathbf{p}) P(\mathbf{p}) \\ \mathcal{R} &= \begin{cases} \frac{\mathcal{L}(N_{\mathrm{sig}},\hat{\mathbf{p}}(N_{sig}))}{\mathcal{L}(N_{\mathrm{sig}},\hat{\mathbf{p}})} & \text{which maximizes the}\\ \mathrm{ikelihood for a given N_{\mathrm{sig}}} \\ \mathrm{if} N_{\mathrm{sig},\mathrm{best}} \geq 0 \\ \frac{\mathcal{L}(N_{\mathrm{sig}},\hat{\mathbf{p}}(N_{sig}))}{\mathcal{L}(0,\hat{\mathbf{p}}(0))} & \mathrm{if} N_{\mathrm{sig},\mathrm{best}} < 0 \end{cases} \end{aligned}$$





w/o systematics

w/  $\pm$ 3 uncertainty on  $\mu$ 













- For the inclusion of systematics, the most popular approaches are:
  - simplified approach: in the toy MCs used to build the likelihood ratio distributions, nuisance parameters are randomly fluctuated in the generation or fit of the toy MC experiments (conceptually similar to the semi-bayesian approach)

- What values of the nuisance parameters should be used when generating the toy MC samples?
- Several options:
  - a priori estimate: fixed values decided a priori
  - can have significant under- or over-coverage

- What values of the nuisance parameters should be used when generating the toy MC samples?
- Several options:
  - conservative: generate with the values giving the worst upper limit
  - can have very large over-coverage

- What values of the nuisance parameters should be used when generating the toy MC samples?
- Several options:
  - **Highland-Cousins:** extract a random value of the nuisance parameters for each toy MC experiment, according to an a-priori distribution
  - can have some over-coverage when the nuisance parameter have a true single value (not varying from experiment to experiment)

- What values of the nuisance parameters should be used when generating the toy MC samples?
- Several options:
  - **a-posteriori Highland-Cousins:** extract a random value of the nuisance parameters for each toy MC experiment, according to an a-posteriori distribution derived from data
  - can still have some over-coverage, but less than the a-priori method

- We have seen that the generation of MC samples for extremely rare events can be problematic
- Nonetheless, sometimes the use of MC to extract PDFs is unavoidable
  - if the PDF shape is not known a priori, and the MC sample is too small to infer a reliable parameterization, there is a strong risk of overestimating or underestimating the systematic uncertainties, due to the inclusion of unnecessary shape uncertainties

True distribution

Exponential estimated from the MC





— True distribution

- Exponential estimated from the MC
  - Exponential estimated on data with constraint from the MC



MC

Data

- We have seen that the generation of MC samples for extremely rare events can be problematic
- Nonetheless, sometimes the use of MC to extract PDFs is unavoidable
  - if the PDF shape is not known a priori, and the MC sample is too small to infer a reliable parameterization, there is a strong risk of overestimating or underestimating the systematic uncertainties, due to the inclusion of unnecessary shape uncertainties
  - using MC histograms to represent the PDFs, with a proper treatment of uncertainties, could be the solution

## The Beeston-Barlow approach

- Binned fit with different populations (e.g. signal, backgrounds)
- The expected MC content of each bin i for each population j (A<sub>ji</sub>) is treated as a nuisance parameter, constrained from the actual MC

### fi: expected yield in bin i of data

 $p_j$ : data/MC scale factor for population j (to be estimated)

$$\ln \mathscr{L} = \sum_{i=1}^{n} d_i \ln f_i - f_i + \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ji} \ln A_{ji} - A_{ji}$$

**Likelihood for data (Poisson)** d<sub>i</sub>: observed yield in bin i of data

 $f_i = \sum_{j=0}^{n} p_j A_{ji}$ 

### Likelihood for MC (Poisson)

a<sub>ij</sub>: observed yield in bin i of MC for population j A<sub>ji</sub>: expected yield in bin i of MC for population j (nuisance parameters)

### The Beeston-Barlow approach



## Practical Examples

#### Phys. Rev. Lett. 131, 161802 (2023)

## Muon g-2 experiment at FNAL

## **OBJECTIVE AND EXPERIMENTAL APPROACH**

- Objective: measurement of the muon g-2
- Approach: measurement of the spin precession frequency of muons in orbit in a magnetic field



 Experimental observable: rate of positrons with E > E<sub>thr</sub> emitted in forward direction w.r.t. the muon momentum

#### SYSTEMATICS

 Main criticality: accuracy of the magnetic field

$$a_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} \frac{\mu'_p(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

Solution: instead of taking absolute field and frequency measurements, a **standard metrologic process** 

(precession frequency of shielded protons in a spherical sample,  $\omega_p$ ) is measured in the same field, and the ratio is used

 Residual uncertainties from beam dynamics, temperature stability, external inputs

#### 2021 JINST 16 P12041

| OBJECTIVE AND E                                                                                                                                                    | Quantity                                                                      | Correction (ppb) | Uncertainty (ppb) |                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|-------------------|-----------------------------------------------------------------|
|                                                                                                                                                                    | $\omega_a^m$ (statistical)                                                    |                  | 201               |                                                                 |
| Objective: r                                                                                                                                                       | $\omega_a^m$ (systematic)                                                     |                  | 25                | accuracy of the                                                 |
| Approach                                                                                                                                                           | C <sub>e</sub>                                                                | 451              | 32                |                                                                 |
|                                                                                                                                                                    | $C_p$                                                                         | 170              | 10                | T ) $(II)$                                                      |
| precession                                                                                                                                                         | $C_{pa}$                                                                      | -27              | 13                | $\frac{I_r}{\mu_e(H)} \frac{\mu_e(H)}{m_\mu} \frac{m_\mu}{g_e}$ |
| in a magne                                                                                                                                                         | $C_{dd}$<br>$C_{ml}$                                                          | $-15 \\ 0$       | 3                 | H) $\mu_e m_e 2$                                                |
| د 10 <sup>8</sup> [                                                                                                                                                | $f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle$ |                  | 46                |                                                                 |
|                                                                                                                                                                    | $B_k$                                                                         | -21              | 13                | d of taking                                                     |
| 10 <sup>6</sup>                                                                                                                                                    | $B_q$                                                                         | -21              | 20                | nd frequency                                                    |
| 104                                                                                                                                                                | $\mu'_{p}(34.7^{\circ})/\mu_{e}$                                              |                  | 11                | a <b>standard</b>                                               |
| 10 <sup>3</sup>                                                                                                                                                    | $m_{\mu}/m_e$                                                                 |                  | 22                | ocess                                                           |
| 10 <sup>2</sup> Fermilab                                                                                                                                           | $g_e/2$                                                                       |                  | 0                 | quency of                                                       |
| $\frac{\mu}{q-2}$                                                                                                                                                  | Total systematic for $\mathcal{R}'_{\mu}$                                     |                  | 70                | s in a spherical                                                |
| $10^{-1} \overset{\text{L}}{\underset{0}{\overset{0}{\overset{0}{}}}} 10^{-2} \overset{\text{L}}{\overset{0}{}} 30 \overset{\text{L}}{} 40 \overset{\text{L}}{} 5$ | Total external parameters                                                     |                  | 25                | neasured in the                                                 |
|                                                                                                                                                                    | Total for $a_{\mu}$                                                           | 622              | 215               | the ratio is used                                               |
| Experiment                                                                                                                                                         |                                                                               |                  |                   | ainties from                                                    |
| positrons with                                                                                                                                                     | $E > E_{thr}$ emitted in                                                      | forward          | beam dynam        | ics, temperature                                                |

direction w.r.t. the muon momentum

stability, external inputs

# Electron g-2

#### **OBJECTIVE AND EXPERIMENTAL APPROACH**

- Objective: measurement of the electron g-2
- Approach: measurement of energy transitions for a single electron in a magnetic field inside a Penning trap

$$n=1 \xrightarrow{r} \frac{1}{\bar{f_c}} = \frac{1}{\bar{v_c}} - \frac{3}{2}\delta$$

$$n=1 \xrightarrow{r} \frac{1}{\bar{v_a}} = \frac{1}{\bar{v_c}} - \frac{3}{2}\delta$$

$$n=0 \xrightarrow{r} \frac{1}{\bar{v_a}} = \frac{1}{\bar{v_c}} - \frac{1}{\bar{v_c}} = \frac{1}{\bar{v_c}} + \frac{1}{\bar{v_c}}$$

$$n=0 \xrightarrow{m_s=-1/2} m_s=+1/2$$

Experimental observable: quantum jumps hv, excited with electrodes,
induce currents in the electrodes
themselves, with a resonance if the frequency of the excitation matches v

#### **SYSTEMATICS**

•

- The necessary quantities ν<sub>a</sub>, ν<sub>c</sub> are measured in situ with the same approach—> no metrology issue
- Dominant uncertainty is expected from the correction between frequencies for free and trapped electrons
- Indeed, B field fluctuations are observed and induce additional systematics



## Electron g-2



induce currents in the electrodes themselves, with a resonance if the frequency of the excitation matches  $\nu$ 



### nEDM

#### **OBJECTIVE AND EXPERIMENTAL APPROACH**

- Objective: search for a neutron EDM
- Approach: measurement of spin precession frequency in E + B field



$$f_n = \frac{1}{\pi\hbar} |\mu_n \vec{B_0} + d_n \vec{E}|$$

- Experimental technique: Ramsey spectroscopy of polarized ultra-cold neutrons within a shielded chamber:
  - π/2 spin flip by oscillating megnetic field
  - find the frequency fn that maximizes the asymmetry btw. spin up and down

#### SYSTEMATICS

- Main criticality: this is not a genuine measurement of zero, because µnB<sub>0</sub> has to be subtracted from a non-zero measurement:
  - absolute value of B<sub>0</sub> need to be known
  - comagnetometry against a metrologic standard (<sup>199</sup>Hg)
- Several residual systematics:
  - systematics in the <sup>199</sup>Hg measurement
  - magnetic non-uniformities
  - asymmetries in the distribution of neutrons w.r.t. the magnetic field in the chamber

....

### nEDM

| <b>OBJECTIVE AND E</b>                           | XPERIMENTAL APPROACH                                |        | SYSTEMATICS          |                                         |  |  |  |
|--------------------------------------------------|-----------------------------------------------------|--------|----------------------|-----------------------------------------|--|--|--|
| <ul> <li>Objective:</li> </ul>                   |                                                     | • Main | oritioality: th      | his is not a                            |  |  |  |
| <ul> <li>Approach</li> <li>precession</li> </ul> | Effect                                              | Shift  | Error                | to be                                   |  |  |  |
| precession                                       | Error on $\langle z \rangle$                        |        | 7                    | non-zero                                |  |  |  |
| Four-layer Mu-metal shield                       | Higher-order gradients $\hat{G}$                    | 69     | 10                   |                                         |  |  |  |
| Precession chamber                               | Transverse field correction $\langle B_T^2 \rangle$ | 0      | 5                    | $\Rightarrow$ of B <sub>0</sub> need to |  |  |  |
| UV light source<br>Mercury polarizing            | Hg EDM [8]                                          | -0.1   | 0.1                  |                                         |  |  |  |
| UV light source                                  | Local dipole fields                                 |        | 4                    | etry against a                          |  |  |  |
| Spin flipper 1                                   | $v \times E$ UCN net motion                         |        | 2                    | Indard ( <sup>199</sup> Hg)             |  |  |  |
| 5T -magnet                                       | Quadratic $v \times E$                              |        | 0.1                  | vstematics:                             |  |  |  |
|                                                  | Uncompensated G drift                               |        | 7.5                  |                                         |  |  |  |
| <ul> <li>Experiment</li> </ul>                   | Mercury light shift                                 |        | 0.4                  | i the <sup>199</sup> Hg                 |  |  |  |
| spectrosco                                       | Inc. scattering <sup>199</sup> Hg                   |        | 7                    |                                         |  |  |  |
| neutrons v                                       | TOTAL                                               | 69     | 18                   | -uniformities                           |  |  |  |
| - π/2 spi                                        |                                                     |        |                      | n the distribution                      |  |  |  |
| field                                            |                                                     |        |                      | r.t. the magnetic                       |  |  |  |
| IIEIU                                            |                                                     | fie    | field in the chamber |                                         |  |  |  |
| - find the                                       |                                                     |        |                      |                                         |  |  |  |
| the asyr                                         |                                                     |        |                      |                                         |  |  |  |

## muEDM

### **OBJECTIVE AND EXPERIMENTAL APPROACH**

- Objective: search for a muon EDM
- Approach: detection of non-zero spin precession in a magnetic field, with MDM precession canceled by a suitable combination of E and B fields



$$\vec{d} = \frac{\eta e}{2mc}\vec{s}$$
$$= \frac{\eta q}{\beta}\vec{s} \times \vec{q}$$

10 0

$$(t) \propto \frac{2P_0 E_f \alpha |d_\mu|}{a\hbar\gamma^2} t$$

Experimental observable: timedependent asymmetry of positrons emitted along and opposite to the B field

### SYSTEMATICS

- Main criticality:
  - it is not necessary to know extremely well the main components of the field, but fake EDM can arise from fringe fields
- EDM is CP-violating, standard electrodynamics is CP-conserving:
  - systematics can be canceled by inverting B and injection direction
  - indeed, it moves the systematics from electrodynamics to the symmetry between the two injection modes
- Detector asymmetries to be kept under control

## MEG & MEG II



## MEG & MEG II



## KOTO

#### **OBJECTIVE AND EXPERIMENTAL APPROACH**

- Objective: search for  $K_L^0 \to \pi^0 \nu \overline{\nu}$
- Approach: search for kaon decays with only 2 photons and nothing else



 Experimental technique: kaons decaying in a volume surrounded by hermetic neutral and charged particle detectors, used to veto background decays

#### SYSTEMATICS

- Main criticality: hermeticity and PID to be precisely controlled to get rid of the Standard Model and beam-halo backgrounds up 10<sup>7</sup> rejection factor:
  - dominant systematics from the expected background rates


# KOTO



# KATRIN

### **OBJECTIVE AND EXPERIMENTAL APPROACH**

- Objective: measurement of the electron anti-neutrino mass
- Approach: measurement of the beta decay end-point



 Experimental technique: electromagnetic filter to count events above a certain energy threshold

### SYSTEMATICS

- Dominant systematics:
  - electric and magnetic field (accuracy & stability)
  - non-Poisson background
- Origin of non-Poisson background:
  - nuclear decays from contaminants produce keV electrons
  - they ionize the residual gas, producing secondaries
  - many secondaries from a very small number of primaries (i.e. correlated background)—> non-Poisson fluctuations

# KATRIN

#### **OBJECTIVE AND E**

- Objective: r anti-neutrin
- Approach: decay end-



| Effect                                                      | 68.2% CL<br>uncertainty on $m_{\nu}^2$<br>(eV <sup>2</sup> ) |
|-------------------------------------------------------------|--------------------------------------------------------------|
| Statistical                                                 | 0.29                                                         |
| Non-Poissonian background                                   | 0.11                                                         |
| Source-potential variations                                 | 0.09                                                         |
| Scan-step-duration-dependent background                     | 0.07                                                         |
| qU-dependent background                                     | 0.06                                                         |
| Magnetic fields                                             | 0.04                                                         |
| Molecular final-state distribution                          | 0.02                                                         |
| Column density ${\bf x}$ inelastic scattering cross section | 0.01                                                         |
| Activity fluctuations                                       | 0.01                                                         |
| Energy-loss function                                        | <0.01                                                        |
| Detector efficiency                                         | <0.01                                                        |
| Theoretical corrections                                     | <0.01                                                        |
| High-voltage stability and reproducibility                  | <0.01                                                        |
|                                                             | 0.24                                                         |

ematics: magnetic field stability) background oisson ays from its produce ٦S the residual cing 5 ndaries from a number of

 Experimental technique: electromagnetic filter to count events above a certain energy threshold primaries (i.e. correlated background)—> non-Poisson fluctuations

# Conclusions

- Compared to general-purpose experiments, systematics in single-purpose experiments pose some special challenges:
  - metrology issues
  - need of dedicated (hardware) tools for the control of systematics
- Control of systematic uncertainties is a critical aspect in the design of single-purpose experiments, often requiring special expertise from outside the HEP field