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ABOUT THE SPEAKER

Detector builder, Nature scrutiniser,
Engineer botherer, and Theory disprover.

PhD in NA6O, until 2013 in CLOUD, and
CMS since 2006:

* CMS ECAL, 15t LHC single isolated photon cross-

section measurement, then two photons, then one
Higgs, then COMBINE Higgs analyses, then Higgs
co-convener.

* Presently building CMS HGCAL for Phase 2
HLlifeWithHexagons.

Profiled as many nuisance parameters as
there are millionaires in the world.
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LIMITED ACCEPTANCE WARNING

+ | am not a statistician, just a physicist trying to be more accurate.
Since 2000 that physicists and statisticians meet in PHYSTAT to figure out many of these issues.

E This view is incomplete and has biases.

Both are my fault, not that of the sources | used.

3 My goal: share some of what | have found useful when building an analysis.

2024 INFN SoS (@DRANDREDAVID 4



BEFORE DANNER ANDARE ALLA SPIAGGIA

"% What are systematic uncertainties.

= How we account for them using nuisance parameters.

© How frequentist inference is done in the present of such beasts.
& How to live with them and answer your reviewers’ questions.

i Walkthroughs of practices and caveats from experience in the wild.

- Interrupt whenever you have a question.
Worst that can happen is to discuss it alla spiaggia.

& Personal disclaimer: publish frequentist results and take Bayesian decisions.

2024 INFN SoS (@DRANDREDAVID



N\YFZANYIANYIANTVIANTYIANTY I ANY S AN

Z QﬂQﬂQﬂQﬂQﬂ%ﬂQ /
NYZANYZANYZANYZANYZANYZANTZ4N
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NZANYZANYZANYZAN\YAN\ YA\

77N\ 77\ 77N\ 77N\ 77N\ 77\ 77\ 7
SYSTEMATIC UNCERTAINTIES | S .



2024 INFN SoS (@DRANDREDAVID 7



‘“errors”’

Unknown
unknowns

“nuisances”’

Known
unknowns

‘““‘counts”’

Known
knowns
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J—
“errors’

o
unknowns work
“nuisances”
Known Typically Statisticians’
unknowns WG
“counts”
Known

knowns
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ACCURACY AND
PRECISION
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ACCURACY AND
PRECISION
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ACCURACY
AND
PRECISION
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TWO WORDS ON
ERROR AND UNCERTAINTY e

What | call error is the result of a bias or mistake.

What | call uncertainty is the degree to which something is (un)known.

I think i¥’s a mistake to call errors uncertainties.

E.g., experimentalists correct for systematic effects (biases). THAT IT WJJS AN ERROR

* Corrections come with added uncertainty.

22222222222



BETTER ACCURACY
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BETTER ACCURACY AND
DETERIORATED PRECISION

s st v
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BIAS US VARIANCE
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Distributed Large-Scale Dimensional Metrology: New Insights

EXAMPLE: METAL RULER ON A HOT DAY

Givens: O ruler when calibrated |ALI .
* Bar measured with ruler at T, = 35 °C. — 1=20°C
. Metal roler calibrated at Ty = 20 °C Lnlobonpebguduebndundunbgebmgbbon bl

) Lss Lz
* Ruler thermal expansion coefficient is a. '\

* Measured in some way that will have uncertainty da. : .
‘O ruler (thermally expanded) when measuring 350G
Estimates:

= Central value: Loor = Ly = I.35 [1+ a (To - T]) ]
* Reduced bias !

* Unc. on L, includes uncertainties on L5, 0, T,,. |
* Additional uncertainty ! bar (7=35°C)

T T e e e e A A A FE A R T FERTA PR PR Y

Lss

In practice: make da and 8T, contributions
smaller than that from OL;s.

2024 INFN SoS (@DRANDREDAVID 17
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Distributed Large-Scale Dimensional Metrology: New Insights

Surprising | Little
example of known
analysis trick with
that excludes great
many theories statistical power

We just |5 We just
need to need to
figure out | figure out

m M systematics systematics
imgfiip.com
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Distributed Large-Scale Dimensional Metrology: New Insights

Surprising Little
example of known
analysis trick with
that excludes great
many theories statistical power

We just We just

need to need to
figure out figure out
systematics systematics
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OUR SYSTEMATIC PLIGHT WITH BIAS

Estimate with Add
Build detector (stat.) Apply corresponding Wonder about

and take data uncertainty corrections (syst.) what we did
from counts uncertainties

2024 INFN SoS
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OUR SYSTEMATIC PLIGHT WITH BIAS

Estimate with Add
Build detector (stat.) Apply corresponding

Wonder about

what we did

and take data uncertainty corrections (syst.)
from counts uncertainties
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OUR SYSTEMATIC PLIGHT WITH BIAS

Estimate with Add
Build detector (stat.) Apply corresponding Wonder about

and take data uncertainty corrections (syst.) what we did
from counts uncertainties
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OUR SYSTEMATIC PLIGHT WITH BIAS

Estimate with Add
Build detector (stat.) Apply corresponding Wonder about
and take data uncertainty corrections (syst.) what we did
from counts uncertainties
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Neutron lifetime (s)
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1000 |-
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LOOKING BACK TO LOOK FORWARD
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Neutron lifetime (s)

LOOKING BACK TO LOOK FORWARD

1050

1000 |-

950

900 [

850 L

1970/1980 1990 2000 2010 2020

PDG scales uncertainties to deal

with discrepant measurements.

X
8 WRE 03
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Neutron lifetime (s)

PDG RPP 2023

LOOKING BACK TO LOOK FORWARD
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A brief history of early Particle Data Group averages is given in Ref. [5]. Our History Plots
show the time evolution of some of our values of a few particle properties. Sometimes large changes
occur. These usually reflect the introduction of significant new data or the discarding of older data.
Older data are discarded in favor of newer data when it is felt that the newer data have smaller
systematic errors, or have more checks on systematic errors, or have made corrections unknown
at the time of the older experiments, or simply have much smaller errors. Sometimes, the scale
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ANATOMY OF A LHC MEASUREMENT

cms 35910 (13 TeV)

.......................................

+ Daa
— S4B fit

A detect
A theory SIS

(with response that can Event data
(€.g. the SM) be simulated)

Summary data
(“observables”)
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ANATOMY OF A LHC MEASUREMENT

Simulation Reconstruction

>

A detector

A theory
(e.g. the SM)

Summary data

(with response that can Event data

be simulated) (“observables™)

Simulation encompasses both Reconstruction also includes any aggregation
theory and experiment aspects. (binning) or transformation (machine learning,
calibration).
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ANATOMY OF A LHC MEASUREMENT

Simulation

Reconstruction

3591 (13 TeV)

+ Daa
— S4B fit

A theor A detector
(e.g. the SYM) (with response that can

Event data
be simulated)

Summary data

(“observables”)

Inference (an inverse problem)

2024 INFN SoS
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IN PRACTICE. ..

Simulation with imperfections (v) using Monte Carlo sampling

A theory A detector Event data

(with parameters L) fle; U, V) {e}
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IN PRACTICE. ..

cms 3591 {13 TeV)

Al categories
+ Daa
— S4B fit E
+-+-- B component
.o
2o

00T TGV S Ve e
m,, (GeV)

Imperfect reconstruction

Event data Summary data

le} {x}
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Simulation of G

proton-proton collision oo

at the LHC involves *e.

processes at many .: .f"’ :

energy scales. o ’.??‘;:.f::‘
L S Y

Different regimes require
separate calculation approaches.

Implemented as chain of
separate simulation packages.
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IMPERFECTIONS ALONG THE LHC WAY

a® Q \\\ \ )& _ .
Ingredient Estimate from... Uncertalniy estimates include...

Fit method and statistical

Proton structure Empirical; no first principles calculation.
uncertainties.

Matrix element calculation  Perturbative calculation from theory, Missing higher orders.
resummed or fixed-order.

Parton shower Perturbative shower development. Matching energy scale to Matrix
element calculation.

{Hadroniz,Fragment}ation =~ MC simulation based on empirical Tuneable parameters and different
models. implementations.
Detector simulation GEANT4 or Fast simulation. GEANT tunes, parameterizations of
digitisation.
Obiject reconstruction and ~ Custom-built algorithms Data-driven calibration uncertainties.
identification (e, L, T, ¥, b/c/q/g-jets, ...).
o ¥ R ® /\ ®
B ” ? T '\

BT JIN B®

® © 2 vl

¢ (53 .‘ ° v.
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ANATOMY OF A MEASUREMENT

.......................................

+ Daa
— S4B fit

A theory

Summary data
(with parameters U)

{x}

Inference on i based on p(x, y; u, v)

) What's y and where did that come from 2
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arXiv:2204.06614

THE STATISTICAL MODEL

The statistical model for inference is a function of the data given all parameters (D),

p(data; P)

can be factorised into primary data, x, and auxiliary observables, y.
For k systematic uncertainties, each y, is paired with a nuisance parameter v;;

p(%,7,®@) = p(%#,7) | | PeWisvi)
k
where p, are the probability distribution functions of the auxiliary observables.

! X is one data point (that can be multidimensional).
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arXiv:2204.06614

THE STATISTICAL MODEL

The “covnts™ ancl thelr esiimaies’
cleopencency on all paramaeiers.

p(X, 37}&’) = p(%;4,7) HPk(yk}Vk)
k

[nfermeiion en heow wall @ry
“nuisanea” is knewmn.


https://arxiv.org/abs/2404.06614

arXiv:2204.06614

SIMPLE COUNTING EXPERIMENT

1 imax 1
jmax 2
3 kmax 3

LlSinglelbingzerofobsenvedfeventst

+ # A single channel - chl - in which 0 events are observed in data .wm wn“

bin
« observation

s bin

9 process
10 process
11 rate

chl
0

chl

PpPX
0

1.47

° MmerBER EEOGEERINR r = 1 recovers theory prediction.

2024 INFN SoS
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arXiv:2204.06614

SIMPLE COUNTING EXPERIMENT

+ # A single channel - chl - in which 0 events are observed in data
5 bin chl

s observation 0

7§ m———————

s bin chl chl chl

9 process PpX WW tt

10 process 0 1 2

11 rate 1.47 0.64 0.22

= Single bin, zero observed events.
* ppX signal.

= U =ris ppX rate modifier. r = 1 recovers theory prediction.

SWWJand[itlcontributionsiwith[0Y62¥and [0 20e vents)
[expecteds

p(n,y;1,V)

2024 INFN SoS
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SIMPLE COUNTING EXPERIMENT

| imax 1

> jmax 2

5 kmax 3

: # A single channel - chl - in which 0 events are observed in data
5 bin chl

¢« observation 0

7 # m——————

s bin chl chl chl

9 process PpPX WW tt

10 process 0 1 2

11 rate 1.47 0.64 0.22
2 # m————————

13 lumi 1nN 1.11 1.11 1.11

2024 INFN SoS

1

| —e

27T

Single bin, zero observed events.

ppX signal.

* M =ris ppX rate modifier. r = 1 recovers theory prediction.

WW and # backgrounds.

arXiv:2204.06614

CMS -

lumi: all processes from simulation and since N = o L all

yields affected by luminosity measurement uncertainty.

2
o (vlumi “Yiumi )

(@DRANDREDAVID
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arXiv:2204.06614
CMS -

SIMPLE COUNTING EXPERIMENT

o = Single bin, zero observed events.
> jmax 2
3 kmax 3 - X . I
i # A single channel - chl - in which 0 events are observed in data pp S|gna *
5 bin chl . ope _ . e
- SEiareitich 0 * M =ris ppX rate modifier. r = 1 recovers theory prediction.
7§ m———————
¢ bin chl chl chl * WW and t#t backgrounds.
9 process PpPX WW tt R . .
o process o 1 2 * lumi: all processes affected by luminosity measurement
11 rate 1.47 0.64 0.22 .
FEETERET uncertainty.

5 lumi  1aN 1.11 1.11  1.11 " " "
xs: ppX has theoretical uncertainty on cross-section (o).

%
[}
2
[y
N
o

|

|

u

2 2
e_ (Vlumi _ylumi) e_ (vxs _yxs)
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arXiv:2204.06614

SIMPLE COUNTING EXPERIMENT

imax 1

jmax 2

kmax 3

# A single channel - chl - in which 0 events are observed in data
bin chl

© ® N N e W N =

observation 0
P ——
bin chl chl chl
process PpX WW tt
10 process 0 1 2
11 rate 1.47 0.64 0.22
2 # m———————
13 lumi 1nN 1.11 1.11 1.11
14 XS 1nN 1.20 = =
15 NnWW gmN 4 - 0.16 =
]
_’. -7 —
p(n, g1, V) =
& 0.64 yield =

0.16 factor X 4 counts

2 2
e— (vlumi —ylumi) e_ (sz —yxs) S

= Single bin, zero observed events.
* ppX signal.
= U =ris ppX rate modifier. r = 1 recovers theory prediction.

WW and #t backgrounds.

lumi: all processes affected by luminosity measurement
uncertainty.

= xs: ppX has theoretical uncertainty on cross-section (o).

- nWW: WW yield estimated from 4 simulated events.

2024 INFN SoS
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arXiv:2204.06614

SIMPLE COUNTING EXPERIMENT

L aax = Single bin, zero observed events.
jmax 2
> kmax 3 . .
. # A single channel - chl - in which 0 events are observed in data ppx S|gn0||.
) bin chl - - . .f. —_ h . .
. Crissratian 0 U =ris ppX rate modifier. r = 1 recovers theory prediction.
y # __________
s bin chl chl chl " WW Clnd it bCICkgroundS.
9 process PPX WW tt o . .
o process o 1 2 * lumi: all processes affected by luminosity measurement
| rate 1.47 0.64 0.22 .
W uncertainty.
5 lumi 1nN TET70 S g . . .
. xs 1IN 1.20 - - = xs: ppX has theoretical uncertainty on cross-section (0).
;. NWW gmN 4 - 0.16

* nWW: WW vyield estimated from 4 simulated events.

. Y
Me_/\(nﬁ) ie_(vlumi _ylumi)ze_(vxs _yxs)2 (VnWW) - e_U“WW
n! 27t "t

p(n,y;r,v) =

> N=0,Y1ym =VYxs =0, and v,y = 4
G Bin rate estimate A does ! ° "

not depend on y,, only v, !

— A(r, V) = r 147 (1.11)"sem: (1.2)"s + 0.22 (1.11)"ums 4 0.64 (1.11)"2ems ‘éngz
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Probability Density Functions for Positive Nuisance Parameters, arXiv:2204.06614

UNCERTAINTIES, EFFECTS, AND NUISANCES

Uncertainty type Directive Inputs Multiplicative factor, f(v) p(y;v) Default values
Log-normal 1nN kappa KV N(y;v,1) v=y=0
For a log-normal systematic Q
uncertainty that scales yields... . the effect on the . the probability distribution function
process normalisation. appended to the statistical model.

Sigma = 2

You may also hear this p.d.f. referred to

as “constraint term”.
This is because we can include external

constraints to the statistical model by
appending more terms here.

> Log-normals guarantee positive
yields for any K, v input values.

PDF
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https://arxiv.org/abs/2404.06614

arXiv:2204.06614

UNCERTAINTIES, EFFECTS, AND NUISANCES

Uncertainty type Directive Inputs Multiplicative factor, f(v) p(y;v) Default values

Log-normal 1nN kappa i N(y;v,1) v=y=0

(xPovm) "V if v < —0.5,

Asymmetric kappaDown,
1 : 1nN (xUP)" if v > 0.5, N(y;v,1) v=y=0
og-norma kappaU

5 PPatp eV K(K2xPv) oiherwise.*
Log-uniform 1nU kappa ad Uy, 1/x,x) v=y=73(k+1/x)
Gamma gmN N, alpha’ v/N P(y;v) v=N+1,y= Nt

MK (62 VP ) = % [41n (xUP/ xDoWn) 4 In (xUPxPoWn) (48> — 4013 + 15v) | ensures that the multiplicative factor and its
first and second derivatives are continuous for all values of v, and reduces to a log-normal for k" = 1/xUP.
TThe rate value for the affected process must be equal to Na.

¥The default value for the nuisance parameter is set to the mean of a gamma distribution with parametersx = N+1, A =1,
as defined in Ref. [20].
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arXiv:2204.06614

THE LIKELIHOOD FUNCTION

For d entries in the data set we tack on more “counts” terms to define the likelihood

function:
HP Xa; U HPk Y Vi)
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arXiv:2204.06614

THE LIKELIHOOD FUNCTION

For d entries in the data set we tack on more “counts” terms to define the likelihood

function:
HP Xa; U HPk Y Vi)

But what is this good for ¢
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arXiv:2204.06614

THE LIKELIHOOD FUNCTION

For d entries in the data set we tack on more “counts” terms to define the likelihood

function:
| | p(Xy; 1,V | | PV Vi)
1. Frequentist inference: v profiled in a likelihood ra’ri?: Coln (ﬂﬁy(ﬂft)))) 0 <p<p
_ L(p=0,7) - L(u = 0,7(0)) K
quep(4) = —ZIH( E(%UO)O ) qrev(1) = 21n< L0 5) ) Tuc(W) =4 (ﬁ%g(u))) i <0
£(0,1(0))
L0 iffi>u

2. Bayesian inference: v, marginalised/averaged over their priors m:

L) = [ £@) [Tmwdd?,  pilvalye) o pilyesve) milve)
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inspired by W. Verkerke

FREQUENTIST INFERENCE WITHOUT NUISANCES

Statistical methodology in particle physics is (very) predominantly frequentist.
Notion of coverage is central to define uncertainties (68%, 925%).

Computational procedures for frequentist methodology quite different from Bayesian:
influences practical aspects of how systematics uncertainties are modelled.

30-second nutshell reminder of Frequentist approach:

* Observations { x } summarized by test statistic q(M),
typically a likelihood ratio testing for compatibility of the data with a certain hypothesis U = M.

* Knowing the distribution of q(M) under given hypotheses U = |, define a
acceptance interval that contains 68% of the observed outcomes.

* A confidence belt maps the acceptance interval for each value of U, and allows to construct a
confidence interval in M for a given observed value of q(M).
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inspired by W. Verkerke and N. Smith

FREQUENTIST UNCERTAINTIES IN HEPP

Single measurement Neyman construction of the confidence belt
interval inversion Acceptance intervals defined by
Xhigh
P(X1ow < X < Xpign; M) = p(; ) dx 21—«
=133 Xlow

S ———— — where 1 — a is the confidence level.

% [ Acceptance /v;

€ © Cinterval for @ .

g fu=6s Procedure in a nutshell:

1. For a given | generate distribution of x, p(x; M).

Illlllllllllllllllllllll

2. Use p(x; M) to determine x,,, and x;,, and make horizontal line.

Confidence
NB: acceptance interval depends on 1-a choice and can be one-sided (for limits).

Intervalonu |2

3. Repeat for many values of U to construct the belt.

111

:lllll'l%lllIlllllllllllllll
o b 2 3 4 5 67 4.  For a given x = 3.3 look up the confidence interval for U from the belt.

observable x

<

(Detailed step-by-step in backup.)
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FREQUENTIST UNCERTAINTIES IN HEPP

fa(k) 1p)

——>

Single measurement
interval inversion

x = 3.3
E‘ 7 _l T l LI I LI II T l l%l T l_l
% [ Acceptance | v mm—— N
g 6 :_In'rervql = —:
o [ = ]
o 5 |- = -
4 :— s —:
;lllllllllllll :
3 -
Confidence L 7
Intervalon 12 |~ -
1B = -
0 -l 11 l 1 4%1 1 l L1 l 111 l 111 l 11 l-l
0 1 2 3 4 5 6 7
observable x

2024 INFN SoS

inspired by W. Verkerke and N. Smith

ﬁ More on the CLs

J

For many measurements
inversion via Likelihood Ratio, q.

LR Acceptance
Interval

parameter U
1 o

0

-}

-}

——
-
—

Confidence
-
Intervalon i |5 |

IlllllllllllllllllIllllllll

T O
3 4 5 6 7
LR test statistic

criterion in backup.

q(u)

' Here there are no nuisance
parameters (cf. D. van Dyk’s 2.3).

U is the only parameter and
L)

an(ﬂ) =—2In L()
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inspired by W. Verkerke and N. Smith

FREQUENTIST UNCERTAINTIES IN HEPP

fa(k) 1p)

J

LR Acceptance

Interval ak)

parameter U
N

Confidence

Interval on u

IIIIIIIIIllllllllllllllllll

2
p=p 1 f
Ak.a. “best-fit”
O-F T L R . 111

0 1 2 3 4 5 6 7
LR test statistic
Significance against

i = O hypothesis
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inspired by W. Verkerke and N. Smith

ASYMPTOTIC APPROXIMATION

LR asymptotically
distributed as log(x?)
and independent of U /

fa(k) 1p)

LR Acceptance

Interval ak)

IIII;II

)

Using asymptotics
(“Wilks’ theorem”)
results in exactly

parameter U
N

AnnlH)

Confidence -
Interval on u |5

rectangular belt

%)

1
< TT T [ Wr T[T 11

Illlllllllllllllllllll

(=

1 2 3 4 5 6 7
LR test statistic
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inspired by W. Verkerke

ADDING NUISANCES

Including nuisance parameters in
profile likelihood ratio

L(1) ;]
= —2In—— [
an(:u) nL(ﬁ) g )
L *EON
— _2 ln (M - | [
L(u’ ) OO:HIi 2 3' 4 5 6 -7

LR test stat istic



inspired by W. Verkerke

ADDING NUISANCES

Including nuisance parameters in The workhorse of inference with nuisances at the LHC.
profile likelihood ratio Confidence regions, confidence intervals, and upper limits.

Beware caveats concerning the asymptotic approximation.

Computing §; - (1) is relatively cheap even when dimension of
vis large.

No practical penalty to infroduce many nuisance parameters.
Many LHC analyses have 102 to 103,

Combined CMS+ATLAS analyses can reach 104

L(p,
L@, )

—21n

is the overall best-fit value of V, i.e. when u = [l.

is the best-fit value of V for a specific value of L.

2024 INFN SoS (@DRANDREDAVID 55



arXiv:2204.06614

THE i = O CASE — “SIGNIFICANCE”

CMS

— qobs p — ° ( |O)d
How unlikely are the data 0 o | Po ngsf qo 4o

under the y = 0 hypothesis?

* Asymptotics also available. <

do = qLHC (O)A
L(0,v(0))
In

L({,V)

““‘WJLL..JIWIH_,W

~

2 4 6 8
do > —— Hybrid New —-
> Significance: 2.54397 / -0.0146063/+0.015170

> Null p-value: 0.00548 +/- 0.000233452
> Done in 5.95 min (cpu), 7.57 min (real)

R S

> —— Significance ——

> Significance: 2.56729

> Done in 0.00 min (cpu), 0.00 min (real)
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https://arxiv.org/abs/2404.06614

SIMPLE COUNTING EXPERIMENT — SIGNIFICANCE

imax 1
jmax 2
kmax 3

# A single channel - chl - in which 0 events are observed in data

bin
observation

bin
process
process
rate

chl
0

chl
PPX
0
1.47

1.11
1.20

chl

chl

O silverlining-851.local

t$ combine data/tutorials/CAT23001/datacard-2-template-analysis.txt -M S

California & Stanford University

<< Combine >>>

<K< v9.2.1 >

>>> Random number generator seed is 123456
>>> Method used is Significance

RooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

All riéhts reserved,

——_Siopificanca  —

q Significance: 0

Done 1n 0.01 min (cpu), 0.01 min (real)

\
Makes sense

please read http://roofit.sourceforge.net/license.txt

(base) mambauser@130e6b27ce0e:/code/HiggsAnalysis/CombinedLimit$ [

2024 INFN SoS
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SIMPLE COUNTING EXPERIMENT — BEST-FIT

] 5 O silverlining-851.local

~

(base) mambauser@f02cb7968bcb:/code/HiggsAnalysis/CombinedLimit$ combine data/tutorials/CAT23001/datacard-2-template-analysis.txt -M M
ultiDimFit

RooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

<<< Combine >>>

<<< v9.2.1 >>>
>>> Random number generator seed is 123456
>>> Method used is MultiDimFit

RooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University

All rights reserved, please read http://roofit.sourceforge.net/license.txt

Doing initial fit:

— [kl == Mdkes sense \

best fit parameter values:

q r +0.000

Done 1in 0.01 min (cpu), 0.01 min (real)
(base) mambauser@f02cb7968bcb:/code/HiggsAnalysis/CombinedLimit$ I
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SIMPLE COUNTING EXPERIMENT — LIMITS

3 silverlining-851.local

(base) mambauser@350bb2cf0367:/code/HiggsAnalysis/CombinedLimit$ combine data/tutorials/CAT23001/datacard-1-counting-experiment.txt

RooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

<<< Combine >>>

<SSRV RN =>>>

>>> Random number generator seed is 123456
>>> Method used is AsymptoticlLimits

RooFit v3.60 -- Developed by Wouter Verkerke and David Kirkby
Copyright (C) 2000-2013 NIKHEF, University of California & Stanford University
All rights reserved, please read http://roofit.sourceforge.net/license.txt

chinery for
n bO'\'h

) md
—— _Asymptoticlimits (Cls.) -—- ‘\'Oﬂc frequer\’ﬂS’f. :
Observed Limit: r < 1.6516 ull asymp odﬁ\er o
Expected 2.5%: r < 0.9613 i ta
Expected 16.0%: r < 1.4257 ard.
Expected 50.0%: r < 2.3438
Expected 84.0%: r < 4.0440
Expected 97.5%: r < 6.8621

Done in 0.01 min (cpu), 0.01 min (real)
(base) mambauser®350bb2cf0367:/code/HiggsAnalysis/CombinedLimit$ I
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HALF-TIME

\ All imperfections should give rise to
an uncertainty.

* Some are more important than others.

= Some are important to one inference but not
another.

€ There are decades of practice on how
to include them in the statistical model.

* Make use of the tools that already exist.

5 Both Frequentist and Bayesian
methods fail in some cases.

= Make sure to understand their limitations and
strengths.
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O. Behnke after PHYSTAT Systematics 2021

ONE LISTING OF NUISANCE PARAMETERS

Luminosity Empirical process shape modelling

. Parameterisations
Detector and per-particle type

Non-parametric smoothing
Acceptance

Morphing of templates
Efficiency and misidentification

Energy scales Nuisance parameters can be constrained
Energy resolutions by:

T | ¢ Detector calibration data
emplates of processes: o ,
P P Control samples with different event selection

Theory total cross section uncertainty The data distributions
istributi

Theory modelling uncertainties

Measurements from other experiments
Limited MC statistics

Theory calculations
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https://www.desy.de/~obehnke/PHYSTAT_SYS/systematics2.pdf

Tomb of the Diver
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https://en.m.wikipedia.org/wiki/Tomb_of_the_Diver
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https://en.m.wikipedia.org/wiki/Tomb_of_the_Diver

Events / GeV

arXiv:2002.06398

— NUISANCES — COUNTS

CMS 35.9 fb" (13 TeV)
PR BN B B L B B B

H-yy

30000 All categories

¢ Data
— S+B fit
------ B component
Bl t1o
[]+2 ¢

n
[e1]
o
o
o

Signal Control

region(s) region(s)

lIIIIIIIIIIIIIIIIlIlIIIIIllIII

160 170 180

my, (GeV)
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https://arxiv.org/abs/2002.06398

arXiv:2002.06398

— NUISANCES — COUNTS

CMS Simulation H-yy 359" (13 TeV)
H VBF ttH WH had
- =] WH-Iep mZH I;d u Zi-ﬂep “nm Cerf M Oy mm S/(S+B)

Untagged 0 47.8 expected events

Untagged 1 461.9 expected events

Untagged 2 704.2 expected events

Signal Control
region(s) region(s)

Untagged 3 594.0 expected events

VBF 0 11.4 expected events

VBF 1 10.6 expected events

VBF 2 34.6 expected events

Signal

10 20 30 40 50 60 70 8 9 1005 o5 1 15

2 25 01 02 03 04 05
Signal Fraction (%) Width (GeV)

S/(S+B)int o,

process(es)

Background Background

Procedure

process(es) process(es)
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https://arxiv.org/abs/2002.06398

| A REVERSIBLE PROCESS

Data also used to:
= Calibrate. . .
* Constrain theory parameters. Reg |On(5) Reg IOI‘](S)

= Constrain non-perturbative inputs.

* Perennial concern that parton distribution function fits

may subsume BSM physics effects. P roceSS(eS) Calib.

Process(es) Theory

Same events #
(Double-counting = Double-dipping)

* Avoiding circularity always in the back of
our minds. Process(es) Theory
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arXiv:1910.09503

BEYOND S AND B — PROCESSES

Quantum-mechanically
indistinguishable example.
= Use interference as systematic?
* Avoid interfering phase space?
* Estimate effects on the total?

Generally-speaking there are:

* Processes sensitive to the inference you want to
make.

* Processes that are not.
* Some you can estimate from MC.
* Others may be better estimated from data.

* Many have an impact on the power of your inference.

* Detector limitations (like noise).

2024 INFN SoS

q q q q q q
W/Z/~
W/Z[~
W/Z/~
W/Z/A
([H ‘,14" (1’! ‘,[HI
More interesting Less interesting

or u*u~, a photon, and two jets are selected. The electroweak component is measured with
observed and expected significances of 4.1 standard deviations. The fiducial cross-section for
electroweak production is measured to be 0zy;j—gw = 7.8 + 2.0 fb, in good agreement with
the Standard Model prediction.

MapGrara5_aAMC@NLO 2.3.3 MC cross-section prediction in the fiducial region (0'23']’. }fgw ). Because
the effect of interference between the Zyjj—QCD and the Zyjj—EW processes is not accounted for in
the Zyj j—QCD contribution, the observed cross-section O'g;l,:’.j_Ew formally corresponds to electroweak
production plus the interference effects.
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https://arxiv.org/abs/1910.09503

CMS-HIG-16-043

CMS ut , Boosted 35.9 fb' (13 TeV)
'_% 0< p:< 1l00 GeV 100<p:'<150 GeVE 150<p:l<200 GeV; 200<p:l<250 GeVg 250<p:.<300 GeVE pl* > 300 lGeV + Observed
CONTRIBUTIONS 5 A e
, ..E Z-1t
g 103 -Z—>up/ee
NOT CONTAMINATION <.
-W+jets
10 QCD multijet
-Others
1 DTotalunc.
Simultaneous inference accounts for 1 — =109
10”
all processes in all regions. 3l 4F 4 obe kg
_? S 0 "Bkg- unc.
g g‘i B
O q

Pure regions not as important as
independent ones.

* Covering similar kinematics minimises
extrapolation systematic uncertainties !

D Bkg. unc.

Contributions in signal-sensitive region(s)
cons'rramed/es'rlmc'red/ex'rrcpolqted from dedicated control regions.

x10° : //

T n
QCD CR (Q /, p non iso.) | <
Wt boost CI>>
w
2
15 ]
—
1 C 6
4
O.SF —e—] 5
0 L 1 1 0
9 12 ' 9 12
@ 1 Q 1 .
» - T — %)
8 0.8 8 0.8
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https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-16-043/index.html

plots from A. Tarek

THE ASIMOV DATASET

Procedure g 25_1. 1 1 T 1 1 1 T 1 T 1 T T 11 T T 1 | T T 1 | T T T 1 I T T J__
* Fix all parameters of the model. S = Total likelihood function -
* Estimate corresponding expected counts. :U: 20 —e— Asimov dataset —:
= i
Zero statistical fluctuations. :>J’ ]
* Crucial property to explore the model’s power 151 i
without (Nature’s) randomness added. - i
10_— —
First used by CCCV for median significance 5:— >
and inspired by I. Asimov’s “Franchise” short - i
Sfory. _I 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1 1 I—
?21 122 123 124 125 126 127 128 129

m,, (GeV)
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https://arxiv.org/abs/1007.1727
https://en.wikipedia.org/wiki/Franchise_(short_story)
https://cds.cern.ch/record/2696211

PULLS,
CONSTRAINTS,
IMPACTS

Essential diagnostics that the tools
can produce for you.

They cannot tell you whether you are
missing something in your statistical
model.

They provide insight on how the
statistical model and the data
interact and affect your inference.

2024 INFN SoS

—e— Fit constraint (obs.) —— +1 SD impact (obs.)
I Fit constraint (exp.) [ +1 SD impact (exp.)

b tagging efficiency (b jets)

b tagging efficiency (c jets, linear)
JES: Absolute (corr.)

Additional b jets in tW

Additional jets in ttW

Normalization tiZ

Matrix-element scale variations (ittt)
b tagging efficiency (c jets, quadratic)
b tagging efficiency (light)
Normalization ttW

JES: Relative Sample (2018)
Additional b jets in ttH

MC stat. in bin 2 of SR-27 up tttt (2017)
JES: Flavor QCD (bottom)

Final-state radiation scale
Matrix-element scale variations (th)
MC stat. in bin 3 of SR-37 tttt (2016)
Initial-state radiation scale (tttt)
Matrix-element scale variations (tfH)

Initial-state radiation scale (t_tW)

—— -1 SD impact (obs.)
[ -1 SD impact (exp.)

arXiv:2204.06614

CMS

(G@DRANDREDAVID
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https://arxiv.org/abs/2404.06614

PULLS,
CONSTRAINTS,
IMPACTS

How much does i change when

changing v ?

* Fix v; to V; = Av; and refit all other
parameters (U, Vi z;).

* Av typically chosen as 1 standard deviation value.
* Impact of V + Av in red.
* Impact of ¥ — Av in blue.

Two different cases shown:

* Full boxes are the impact after the fit to the
Asimov dataset (“expected”).

expected” does not imply “correct”; it’s just a
reflection of what to expect with this choice of statistical
model and observables.

* Lines show the impact after the fit to collision
data (“observed”).

2024 INFN SoS

arXiv:2204.06614

—— +1 SD impact (obs.) —— -1 SD impact (obs.) CMS

I +1 SD impact (exp.) [ -1 SD impact (exp.)

b tagging efficiency (b jets)

b tagging efficiency (c jets, linear)
JES: Absolute (corr.)

Additional b jets in tW

Additional jets in ttW

Normalization tiZ

Matrix-element scale variations (ittt)

b tagging efficiency (c jets, quadratic)
b tagging efficiency (light)
Normalization ttW

JES: Relative Sample (2018)

Additional b jets in ttH

MC stat. in bin 2 of SR-27 up tttt (2017)
JES: Flavor QCD (bottom)

Final-state radiation scale
Matrix-element scale variations (th)
MC stat. in bin 3 of SR-37ttt (2016)
Initial-state radiation scale (tttt)
Matrix-element scale variations (ttH)

Initial-state radiation scale (ttW)

CMS /
mbine
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https://arxiv.org/abs/2404.06614

PULLS,
CONSTRAINTS,
IMPACTS

How much information is gained
oneachv ?

Three things shown:

+1 represents what you put in the model.

Grey bars are the uncertainty after the fit
to the Asimov dataset (“expected”).

! “expected” does not imply “correct”; it's just

reflection of what to expect with this choice of
statistical model and observables.

Black uncertainties are the uncertainty
after the fit to collision data (“observed”).

2024 INFN SoS

—e— Fit constraint (obs.)
Fit constraint (exp.)

b tagging efficiency (b jets)

b tagging efficiency (c jets, linear)
JES: Absolute (corr.)

Additional b jets in ttW

Additional jets in ttW

Normalization ttZ

Matrix-element scale variations (ittt)
b tagging efficiency (c jets, quadratic)
b tagging efficiency (light)
Normalization ttW

JES: Relative Sample (2018)
Additional b jets in ttH

MC stat. in bin 2 of SR-27 yp tttt (2017)
JES: Flavor QCD (bottom)

Final-state radiation scale
Matrix-element scale variations (th)
MC stat. in bin 3 of SR-37ttt (2016)
Initial-state radiation scale (tttt)
Matrix-element scale variations (tfH)

Initial-state radiation scale (ttW)

NEE
(V-v,)/Av
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https://arxiv.org/abs/2404.06614

PULLS,
CONSTRAINTS,
IMPACTS

= +1 represents what you put in the model.

* Grey bars are the uncertainty after the fit

to the Asimov dataset (“expected”).
- A

2024 INFN SoS

arXiv:2204.06614

Additional jets in ttW |

You can see here an expected uncertainty ~40% smaller
than what was put in the model.

So if someone says you should be “conservative” and put a
large(r) uncertainty in the model, that may have zero impact
on the analysis if the data is able to constrain it.

This is not necessarily a problem; e.g. here we have a theory

uncertainty that was hard to gauge in the first place.
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PULLS,
CONSTRAINTS,
IMPACTS

How much information is gained on
eachv ?

Different datasets tell us different things:
Pre-fit expected (Asimov)
“What power is this model expected to have 2”
Pre-fit toy data sets
“What do statistical fluctuations imply for that power 2”
Post-fit expected (Asimov)

From partial data, e.g. only (some) CRs.
From whole data: CRs + SRs.

Post-fit observed
Partial data or whole data.

Include statistical fluctuations.

Post-fit toy data sets

“How unlucky was the observed 2”

2024 INFN SoS

—e— Fit constraint (obs.)
Fit constraint (exp.)

b tagging efficiency (b jets)

b tagging efficiency (c jets, linear)
JES: Absolute (corr.)

Additional b jets in ttW

Additional jets in ttW

Normalization ttZ

Matrix-element scale variations (ittt)
b tagging efficiency (c jets, quadratic)
b tagging efficiency (light)
Normalization ttW

JES: Relative Sample (2018)
Additional b jets in ttH

MC stat. in bin 2 of SR-27 yp tttt (2017)
JES: Flavor QCD (bottom)

Final-state radiation scale
Matrix-element scale variations (th)
MC stat. in bin 3 of SR-37ttt (2016)
Initial-state radiation scale (tttt)
Matrix-element scale variations (tfH)

Initial-state radiation scale (ttW)

IH}I

§+0.09
110700

: §+0.13 :
1 .375_0_13

I —
——
—

——

e}
e ]
5 1
e ]
———

-1 0 1 2 -
(V-v,)/Av
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CONSTRAINING
NUISANCES ?

From tt cross-section
measurement: eJ—r,qu, utu-,
and ete™.

“effects of colour
reconnection (CR) processes
on the top quark final state”

Is constraining these ok ?
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Normalized pull

N

—_

CMS-TOP-17-001

CMS 35.9 b (13 TeV)
- Modelllng uncertamtles ® Normalized pull | Fit constraint
o i | MC statistical —— Pre-fit uncertainty

——
.

W e tW oty B.p. CR ~.CR ~ CR A~ Lran, Frag tf ratf jom MESLF 1y UE
Oy W rsWis M P alahagr R EriR G, R Qo fom. Ronft Espltisk Tondt s JE 1,
S scag SCa//? Sealg S"a ;}‘Dfo” 80 0y on o VnSp/'reZ’ersé M@e‘??fé% >Cale ”’afc/;?a’
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https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-17-001/index.html

USE THE TOOLS TO SEE
THE INGREDIENTS

Example analysis with two templates, each with a

systematic shape variation:

* Observable x is a MVA output: more background at lower
values and more signal at larger values.

* One can see from the data that there is probably no signal in Nature.

= Signal syst. uncertainty
controlled by nuisance parameter ©.

* Background syst. uncertainty
controlled by nuisance parameter a.

2024 INFN SoS

arXiv:2204.06614

CMS :
—— background -+ alphaUp
---- alphaDown
on 307777 —— signal e sigmaUp
-"é’ ---- sigmaDown
5 . ¢ data obs
— ¢
o 204 | = l
E ...... : l
GC) l--I-- ...... E
& 10 O
0.0 0.2 0.4 0.6 0.8 1.0

Xx = MVA output
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https://arxiv.org/abs/2404.06614

USE THE TOOLS TO SEE
THE EFFECTS

Top panel — bin contents:

" Black points: observed value.

* Red: pre-fit estimate and uncertainty.
* Blue: ditto post-fit.

Middle panel — bin contents differences:

- Difference between estimates (A) and observations (n) both
pre-fit and post-fit.

* Post-fit reduces discrepancies between model and data.

Lower panel — estimate uncertainties:
* Ratio between the and

= Post-fit reduces estimated uncertainties.

2024 INFN SoS

arXiv:2204.06614

357 —— Pre-fit + A\ Pre-it
30 ---- Post-fit HEE *+AAPostft
“ 1 ¢ Data
S0
-
— 5 |
3200
i ¢
9 151
5 [
D 10 -
5_
0 T
0.0 0.2
i i—
e 2 ===
| 0-
~<
=3 — Pre-fit ---- Post-fit
0.0 0.2 0.4 0.6 0.8 1.0
1.25
g g 00 T R
312
0.75 ' . : l
0.0 0.2 0.4 0.6 0.8 1.0

X = MVA output
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PHYSTAT 2023: van Dyk

ASTRONOMERS AND CALIBRATORS

All-in-one in HEPP but not universal.

* Also makes HEPP papers have very long, uninformative, author lists.

Cases in LHC where “interpreters” are “calibrators”.

Cases where “interpretation” is blunted to not step beyond
“calibration” stated ability.

My rule of thumb: if an analysis constrains a calibration-
provided nuisance parameter, stop and think.
* And then possibly take action.

2024 INFN SoS
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https://www.birs.ca/events/2023/5-day-workshops/23w5096

ALTERNATIVES AND MORPHING

Some alternatives are physical deformations
with meaning.

" “Average” /morphing makes sense.

Some alternatives are really just alternatives.

* And if they end up mattering we'll likely throw one out
as unphysical. (Cousins)

Perturbative theory uncertainties are a
whole different beast altogether.

* Limited but non-zero knowledge on the next term.

2024 INFN SoS

PHYSTAT 2023: Brenner, Manole, Windischhofer, Tackmann, Cousins

Analytical
shapes

Crystal Ball

Empirical
descrip-
tions

Vertical interpolation

Moment morphing

Physics

inspired Analytic Computations

Effective Lagrangian Morphing

Step 1: Fit multivariate OT map Stgp 2: Evaluate on CR of b
7 from CR to SR of b (distinct modeling assumptions
from density ratio extrapolation)

b(x)
Control § Signal i Control Control } Signal i Control
Region : Region : Region Region : Region : Region
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from W. Verkerke

interpolated to
A n n
M 0 RP H I N G unseen" NP value
<
l °

Nuisance parameters are continuous, o ®
but samples are generated only a I

specific values. run simulator

" : at fixed NP values>
Not just interpolating, but also Vo 4

extrapolating. vV

2024 INFN SoS (@DRANDREDAVID 8



from L. Heinrich

MORPHING

Main workhorse

at LHC.
= Several limitations e

0 82 84 86 88 90 92 )4 96 98 100
known. \
Piecewise linear e

50N

interpolation

s
S
TTTTT

response model

for a one bin

Now modern
technology for

Bin-by-bin piece-wise interpolation

. . . -1 -0.5 0 0.5 15 1- h f II_T _ 1‘ . t T.
mth-d:mens:onc:I . robus. enou'g or small-to moderq. e dls.or' ions
. typically introduced by systematic variations
morphing now
available.
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ALTERNATIVES

Events /(1 x0.025)

—p Parton Shower generator

Pythia Nature

O Sherpa
Next year’s O

generator )
Herwig

2024 INFN SoS

JES: flavour composition
JES: Eff1

tt VFSR

Luminosity

Wt ME generator

JES: n intercal. model
PDF central value

JES: pileup p

b-jet efficiency scale fac. 0

ATLAS

from W. Verkerke

Are we really gaining any

knowledge about Nature ?
06 04 02 0 02 04 06

IIIIIIIIII]IIIIIIIIIIIIIIIIII

VvV with 10x
———— reduced

uncertainty

— Pyl

fs=13TeV,3.2fb" Pre-fit Impact on

7/ / / A Post-fit Impact on p

llllllllllllllllllllll]llllll

-3 - -1 0 1 2
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From A. Gilbert via A. de Wit

LIMITED SIMULATION STATISTICS

Account for uncertainties due to
the limited sample size used
when creating templates.

* Barlow-Beeston procedure widely
available.

= “Lite” version reduces number of
nuisance parameters.

* No one prescription on how to merge nuisances.

HH

I

I

Barlow-Beeston method Barlow-Beeston-lite method
Comput. Phys. Comun 77 (1993) 219 arXiv:1103.0354
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LIMITED SIMULATION STATISTICS

SK FHC 1R, Yo MpT

F T — T 1 T T T [ T T T 1 T3 momentum distribution < C

7= —  foracertain angle bin 12—

E ':':‘.J MC stat E (before scaling) r

6_ 1 | r

’5 =2 Uncertainty 10~

g '3 E L L 8:—

(13 ° 7 a4 i Py Pjx1 momentum ( C

Effects from “horizontal g« z ) o

L 3k 3 Wist n

> E 3 r

. ° m E 1 ) C

migration of events. 3 tersoung i

T3 . 1] li = \ fp-scale . P Zi

F | + L

* Induce “vertical” effects. ST R A R :
%2 04 06 0.8 1.0 12 oo T

Ey. [GeV] gpscad.,  M(89,40) u :

* Not related to bin-by-bin
uncertainties (Barlow-Beeston).

from C. Bronner via N. Wardle

— T T T

500 MC events
5k MC events
50k MC events

poa e b by b by baas

\_/

Shift energy scale in simulation and calculate

- t
migration between neighboring bins Jumps in x* due to e

vents jumping between

I B
1.05 1.1
Energy scale

bins o, 14
<

L L L

500 MC events
5k MC events
50k MC events

o b b b b P oy

TR T S R |
1.05 1.1
Energy scale

2024 INFN SoS

Regularisation can help smooth out these effects: e.g
distribute events across-bins (assign ”width” to each

event)
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from W. Verkerke

“BEING CONSERVATIVE”

and scale uncertainties.

Should uncertainties be correlated or uncorrelated 2 It depends.

Consider two bins, Bi with yields Si.

t e L

NP: 10% bkg uncertainty NP1: 10% bkg unc. —bin T NP: 10% bkg uncertainty
correlated modeling NP2: 10% bkg unc. — bin 2 anti-correlated model

POl o< S1 + S2 Conservative Appropriate ¢ Very Optimistic
POl < S1 / S2 Very Optimistic Appropriate ¢ Conservative
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“BEING CONSERVATIVE™

Should uncertainties be correlated or uncorrelated 2 It depends.

Consider bins with very different numbers of “counts”.

Data —— __I_-

Uncertainty

jiN

‘pre-fit’

One NP representing
10% bkg uncertainty
correlated effect in both bins

2024 INFN SoS

ML fit

»

‘post-fit’

R -

One NP representing
5% bkg uncertainty

from W. Verkerke

Uncertainty reduction
in both bins from
contraining power of
left bin alone !

correlated effect in both bins
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PHYSTAT 2023: Brenner, Manole, Windischhofer, Tackmann, Cousins

ALTERNATIVES AND MORPHING

Some alternatives are physical deformations
with meaning.

" “Average” /morphing makes sense.

Some alternatives are really just alternatives.

* And if they end up mattering we'll likely throw one out
as unphysical. (Cousins)

Parametrize and estimate the actual source of the uncertainty: f/(0)
Perturbative theory uncertainties are a 23

f(x) = f(0) + f'(0)= + f"(0) — + O(z®)
whole different beast altogether. i -

* Limited but non-zero knowledge on the next term.

source of the theory uncertainty

@ We typically know a lot about the general structure of f”/(0) even without
explicitly calculating it
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arXiv:1408.6865

DISCRETE PROFILING

Invented in CMS H — yy to deal with different parametric background choices.
= ATLAS uses “spurious signal” (different) method.

Extensively validated to not bias inference.

> 250 < 220 <220
O B — Laurent v — L t L
O I Jf ! 218 auren a1l —— Minimum Envelope
® — Exponential B — Exponential Al
c 200 - C 68.3% Interval
4 \ — Power Law 216 — Power Law 216 - °
w - C
. — Polynomial C — Polynomial C 95.4% Interval
- 214 214 -
150 — r i
- 212} 212
1001~ 2100 210/
i 208 208 :— \ 5T
50— L .
. 206 - 206 [
_| RN AN RS NN R N N 204_ e v b b P b b | 204 T S O O Ao A v A
10 115 120 125 130 135 140 145 150 -1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5
m,, (GeV) v} u
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https://arxiv.org/abs/1408.6865

PHYSTAT 2023: Schafer, Wardle, Kania, Brenner, Tackmann

THE ~ OF DISCRETE PROFILING

Log likelihood Akaike

MLE of 6 at MLE

Perhaps there is hope to understand

. ope . . Linear 0.13 -174.79 355.58 =
discrete profiling in the model selection
context Quadratic 0.84 -155.85 319.70 0.29
How do you feel about model averaging being the Subie 1542 “12:50 SIS0 0.80
(weighted) average of estimates across different Quartic 1.21 -154.02 320.05 0.24
2
models? Quintic 1.18 -153.84 321.67 0.11
Unavoidable comparison with spurious Sextic 124 -153.83 323.65 0.040
signal; both are prescriptions using Septic 125 -153.34 324,69 0.024
statistical uncertainty under the signal as
the gauge

Discrete profiling functions are chosen to have bias
smaller than O(10%) stat. unc.

Spurious signal is chosen on similar basis and
added to signal model.
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PHYSTAT 2023: Barlow, Lockhart, Wardle, Volobuev, Brazzale

A WELCOME SYSTEMATISATION

OPAT vs APAST

Combination of measurements vs
combined measurement.

Discussion on simplified likelihoods:
* Taylor expansion seems to be founded.

* For PDFs a whole different story: cumulants,
saddle point approximation, etc.

2024 INFN SoS

“Systematic”
OPAT )
systematics oA
evaluation | o

3
~
“

00

05

- v
o o

“Statistical” .
From ML *

estimation

20

1.0 15 20 25 30 35 40

From Likelihoods
Error is variance of result Error is 68% central CL

You are probably Combining Errors,
in quadrature + skew

Goodness of fit is irrelevant

You are probably not combining
results (but you can if you work at it)

“Systematic” Asymmetric Error

formulae

You are probably Combining Results
Compatibility vital & straightforward

You are probably not combining
errors (you can if you work at it, but
not in quadrature)

“Statistical” Asymmetric Error
formulae
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2AInL

[o2]

Y

APAT — ALL PARAMETERS AT A TIME

CMS

I H-yy + H— ZZ-» 41 Combination — Run 1

[ Run 1:5.1 6" (7 TeV) + 19.7 " (8 TeV) — — Stat. Only
[ 2016:35.9 b (13 TeV) — 2016

— = Stat. Only
Run 1 + 2016
— = Stat. Only

2024 INFN SoS

IlIIlIlIIlIl[lllllllllllllIllllllllll[ll

——  ——— All profiled \ .\
CMS N
Run 1:5.1 fb™ (7 TeV) + 19.7 fb™ (8 TeV) \ - Total Stat. Only
2016:35.9 fo' (13 TeV)
Total (Stat. Only)
Run 1 H—yy — 124.70 £ 0.34 (£ 0.31) GeV
Run 1 H— ZZ- 4l —_—— 125.59 + 0.46 ( = 0.42) GeV
_» Run 1 Combined — 125.07 +0.28 (+ 0.26) GeV |
2016 H-yy —— 125.78 + 0.26 ( £ 0.18) GeV
2016 H— ZZ—s 4l —— 125.26 £ 0.21 (£ 0.19) GeV
—» 2016 Combined —— | 125.46 £ 0.16 (£ 0.13) GeV |
—> Run1+2016 — [125.38 £ 0.14 (£ 0.11) GeV |

122 123

124 125 126

127 128 129
m,, (GeV)

(@DRANDREDAVID

arXiv:2002.06398
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https://arxiv.org/abs/2002.06398

APAT — ALL PARAMETERS AT A TIME

Source Contribution (GeV)
Sub filed Electron energy scale and resolution corrections 0.10
ubsets protile Residual pt dependence of the photon energy scale 0.11
Modelling of the material budget 0.03
Nonuniformity of the light collection 0.11
All fixed to MLE OREE Total systematic uncertainty = Total unc. e Stat. unc. 0.18
. " Statistical uncertainty 0.18
All profiled ﬁ" Total uncertainty 0.26
CMS
Run 1:5.1 fb" (7 TeV) + 19.7 fo™ (8 TeV) -—Total R Stat. Only
2016:35.9 fo' (13 TeV)
Total (Stat. Only)
Run 1 Hoyy ——1 124.70 +0.34 (+ 0.31) GeV
Run 1 H— ZZ—- 4l [ —— 125.59 + 0.46 (£ 0.42) GeV
Run 1 Combined —— 125.07 £ 0.28 ( £ 0.26) GeV
2016 H-yy — 125.78 £ 0.26 ( + 0.18) GeV
2016 H— ZZ— 4l — 125.26 £ 0.21 (£ 0.19) GeV
2016 Combined —— 125.46 £ 0.16 (£ 0.13) GeV
Run 1+ 2016 l-i-' 125.38 £0.14 (£ 0.11) GeV
1 I | I - I | T - I | - | I | T - | I L1 1 1 I | I - I L1 1 1 I L1
2024 INFN SoS 122 123 124 125 126 127 128 129 (@DRANDREDAVID 93

m,, (GeV)



PHYSTAT 2023: Canonero, Cowan

BETTER ASYMPTOTICS

Sine qua non for "errors on errors” that can

) 1
benefit all. * —
enetit @ r, =1, +—log = e +0(n73/2)

Correction can also be used as coverage rli rﬂ Viru

dingOSﬁC tool. TJNN(O;]-) + O(n—B/Z)

| wonder what happens in asymmetric
cases...

2024 INFN SoS (@DRANDREDAVID 9%


https://www.birs.ca/events/2023/5-day-workshops/23w5096

HOW CERTAIN IS THAT UNCERTAINTY?

“Unleash the tails 1”

Discussion focused on applying
these foremost to theory inputs.

* For exp. uncs. | wonder what the

evaluation experiment_k by physicist_i

would be.
* Especially when k =i.

* Lots of interesting ideas to pursue to
understand how it deals with outliers.

* | know at least one theorist seriously
studying the method.

2024 INFN SoS

Gaussian
/\\ -=-- Gaussian
l’ \
U \
1 \
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! \
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! \
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/ \
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80480 - —j
--- CDF
80460 ——— Atlas
_ 80440 A
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3 80400
80380
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PHYSTAT 2023: Canonero, Cowan

=== Gaussian
t-dist (e=0.7)

— t-dist (£€=0.5)

t-dist (€=0.3)

w
wn

w
o

N
wn
"

N
o

-
wn
L

-
o

wn
L

Gamma Variance Model

o

half-length of 1-o confidence interval (Me'
o
o

0.1 0.2
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“LAST MILE™ CORRECTIONS

Simulation imperfections can have
substantial impact on inference.

Example evolution with time:
* “Multiply and smear”.
* 1-D quantile regression.

* Chained quantile regression.

Is this the best that can be done?

Heard at PHYSTAT 2023: g il
* Multi-dim. quantile regression. /’_/\"‘_‘
* Multi-dim. CDF. i

* Optimal Transport maps. S RTINS

Multivariate Ranks

Suggests a way to define multivariate C.D.F.s and quantiles

Given a reference density ¢ and a multivariate density p:

- The OT map from p to ¢ is called the multivariate C.D.F. of p
2024 |N FN SOS - The OT map from g to p is called the multivariate quantile of p.

Events/0.02

arXiv:2208.12279, ENAL LPC seminar, PHYSTAT 2023: Manole

(@DRANDREDAVID

Input variables Target Input variables Target
X:(m,n,é,/’)/ 1 X=(PT,TI7¢»i)/ 1
X | w / Y2 X |y / Y2
X | v | v Y3 X |y | v Ys
X Y1 te Yn—-1 Yn X. yforr yf,,o_rfl Yn
CMS Preliminary 137 fb! (13 TeV)
.CMS 35.9 b (13 TeV) S | : RS ]
8 o o L L B B B B § g 3 Z— ete” simulation
12— = § Simulation stat. & syst. unc.
¢ Data i & 0k t Data i
10~ [[]Z—e*e simulation I ]
L Simulation syst. unc. i
e I
6 (]
[ 2016 !
4l il
- L3
. - 1 1 1
2 il 2.0 T . —
0 rerwrsl WPEFEPE PRI TS ATRTATS ITUTOT A\ ELO"....o000000000"0000-00000"—
-08 -06 -04-02 0 02 04 06 08 1 8 05F E
Photon identification BDT score 00 05 0.0 T 20

Min ID BDT score
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https://arxiv.org/pdf/2208.12279.pdf
https://indico.cern.ch/event/1006100
https://www.birs.ca/events/2023/5-day-workshops/23w5096

PDG RPP 2023, arXiv:2204.06614

>1 PARAMETERS OF INTEREST . Bt

Joint inference can and should be /)1
done.

I-a) (%) |[M=1 M=2

oLl e e
. 68.27 1.00 2.30
Same asymptotics but thresholds 90, 571 461 0.0 Pazr:metzfofinZéSrestl\gﬁJ . 12.5
H 95. 3.84 5.99
for regions depend on number of o s he CMS
parameters. 99. 6.63 [T 10
99.73 9.00
-8
E
_6 g?_
S
(o

0 1 2 3

,
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https://pdg.lbl.gov/2023/reviews/rpp2023-rev-statistics.pdf
https://arxiv.org/abs/2404.06614

KNOW YOUR APPROXIMATIONS

Background with 20% uncertainty modelled in three different ways.

* Option 1 (Gaussian)
* Option 2 (Log-normal)
* Option 3 (Gamma)

pOe;uvp) =P(xip-s+b(1+6-v))  N(y;vp, 1).
p(x; 4, vp) = PO - s+ b - k) - N(y; vp, 1).
p(x;u,vp) =P u-s+b-vy) - P(eg; beg - Vp)-

s =25b=25x =37

Option 1 (6 =0.2)

\

0o 1

2 3 4 5
u
2024 INFN SoS

Option 2 (k =1.2)

2.0

1.5

< 1.0

0.5

plots from N. Smith

L, 7 (1)

(W) =—21In —
1 L([.l, vb)

—— Option 1
3 - Option 2
—— QOption 3
-
=2
<
(@]
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https://indico.cern.ch/event/1227742/contributions/5240048/attachments/2587176/4463719/CombineTutorial_Stats.pdf

SAVED BY THE C.L.T.

Background with 20% uncertainty modelled in three different ways:

* Option 1 (Gaussian)
* Option 2 (Log-normal)
* Option 3 (Gamma)

s = 10,b = 25,x = 37 = Small difference in the inference for this case.

Option 1 (6 =0.2)

2024 INFN SoS

p(euvp) =POGu-s+b(1+6-vp))  Ny;vp, 1.

p(x;u,vp) = P(x;u-s+b k') - N(y;vp, 1).
p(x;u,vp) =P u-s+b-vy) - P(eg; beg - Vp)-

Option 2 (k=1.2)

2.0

Option 3(ncr = bCR = D)

plots from N. Smith

—— Option 1

| — Option 2

—— Option 3

v

(G@DRANDREDAVID
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https://indico.cern.ch/event/1227742/contributions/5240048/attachments/2587176/4463719/CombineTutorial_Stats.pdf

PARTING THOUGHTS

@ You'll spend a lot of time correcting
measurements.

= So make friends with the uncertainties that come
with those corrections.

B

_) Whenever you have low counts, be
very careful.

“ If you have zero counts, welcome to the club.

v Profiling nuisances has great power.

* Whether the power to constrain them is licit or not is
another matter.

2024 INFN SoS (G@DRANDREDAVID 100
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Vamos a la playa

Brano di Righeira

Righeira Vamos a la playa 1983 -
YouTube

https://www.youtube.com > watch

Testo

Vamos a la playa, oh oh oh oh
Vamos a la playa, oh oh oh oh
Vamos a la playa, oh oh oh oh
Vamos a la playa, oh oh... Testo completo

Fonte: LyricFind (@DRANDREDAVID
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ACKNOWLEDGEMENTS

All who have contributed to more than two decades of PHYSTAT wisdom-building.
" https://phystat.github.io /Website /

CMS’s collective wisdom distilled into the COMBINE tool.
" https://arxiv.org /abs/2404.06614

* https: //qgithub.com /cms-analysis /HiggsAnalysis-CombinedLimit

Speakers at the 2021 and 2023 PHYSTAT workshops on systematic uncertainties.
* https://indico.cern.ch/event /1051224

* https://www.birs.ca/events /2023 /5-day-workshops /23w5096

Wouter Verkerke’s decades of material on the topic of modelling.
* Dankjewel !
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NOT ENOUGH TIME TO COVER DETAILS OF...

Multidimensional modern morphing.

“Marginalizing versus Profiling of Nuisance Parameters” arXiv:2404.17180

Diagonalization and externalisation of uncertainties.
Sampling nuisance parameters and constructing toy datasets.

The galaxy of asymptotics:
Wilks (single parameter),
Wald and Engle (multiple parameters), and

Chernoff and Self-Liang (parameters at boundaries).

The Trials Factor or Look Elsewhere Effect and Machine Learning.
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https://arxiv.org/abs/2404.17180

arXiv:2204.06614
CMS -

THE CL, CRITERION —95% CL LIMIT EXAMPLE

Motivation and description in PDG RPP 40.4.2.4,

, CMS CMS
10 - 0.30
Lot ] 1 fQLuc(u=0.4)|u=0.4) Py
1 f(Quuc(u=0.4)|u=0) 1-pp 0.25 1

104 == GOPE(u=0.4)
0.20"
0.10"
0.05 1
0.00

0.1
Qinc(u=10.4)
_ {fq?’;(y)f(qX(y)ly) d‘i if x=LHC, > —_— Hybrid New ——
“LS W F(ge(m)lu) dg  if x=TEV or LEP, > Limit: r < 0.346362 +/- 0.0134581 @ 95% CL

> Done in 0.31 min (cpu), 0.32 min (real)

obs X
by — {fJ* " fla(w)10)dg, if x-LHC,

2024 INFN SoS Jywy £(@x(#)[0) dg,  if x=TEV or LEP, @DRANDREDAVID 105


https://arxiv.org/abs/2404.06614
https://pdg.lbl.gov/2023/reviews/rpp2023-rev-statistics.pdf

POISSON EXAMPLE
WITHOUT NUISANCES

(M5+b)xe—(us+b)

Model: p(x; us + b) =

x!

* Known (fixed!) background.
- L(u)
Test statistic: = —2In———
est statistic: gy (1) @)

* Jagged behaviour of g, due to Poisson discrete

nature, not by limited toy statistics (104 in this case).

2024 INFN SoS

a=0.05
5 T ’/‘
41 ,
3 4
2 s=5, b=10
—— gcfory'=p
1 T === Xobs = 20
BE= Accepted
O T
0 10 15
do
=N s=5, b=10, x=20
—— Cls+p
4 — CLb
—— CLs
....... a=0.05
31 Accepted CL;
2_
1_
0 T r T r
0.0 0.2 0.4 0.6 0.8 1.0

plots from N. Smith

a=0.05
5 7 1$ e
v L
4 - ’
/
31,/ %
Pt
I q
5. ‘5 s=5, b=10
N —— qcfory'=p
1 1 .>, === Xobs = 20
'>, half-x2 95 %-ile
0 .
0 5 10 15
do
51 s=5, b=10, x=20
Clssp
— CLsp asymptotic
41\ CLs
: —— CLp asymptotic
CLs
34 ¢ —— CLs asymptotic
O e a=0.05
Accepted CLg
0 T — T T
0.0 0.2 0.4 0.6 0.8 1.0

p
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from W. Verkerke

NEYMAN

c 0 N ST R U CT I O N e Simplest experiment: one measurement (x), one theory parameter ()

D E c 0 N ST R U CTE D e [or each value of parameter 6, determine distribution in in observable

X

observable x —
X
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https://www.precision.hep.phy.cam.ac.uk/wp-content/people/mitov/lectures/GraduateLectures/Advanced-Statistics-Verkerke.pdf

NEYMAN

CONSTRUCTION
DECONSTRUCTED

Y This 1 — a region is:
= two-sided for intervals, and

= one-sided for limits.

ﬁl—a=68%

constructs +10 intervals.

2024 INFN SoS

from W. Verkerke

e Focusonaslicein B

— Fora1-a confidence Interval, define acceptance interval
that contains 100%-a  of the distribution

pdf for observable x
given a parameter value 6,

A
f(x[bo)

>
observable x
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https://www.precision.hep.phy.cam.ac.uk/wp-content/people/mitov/lectures/GraduateLectures/Advanced-Statistics-Verkerke.pdf

from W. Verkerke

NEYMAN

c O N ST R U (T I 0 N e Now make an acceptance interval in observable x

D E c 0 N ST R U (T E D for each value of parameter ©
f (:I;IH)

>

observable x
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https://www.precision.hep.phy.cam.ac.uk/wp-content/people/mitov/lectures/GraduateLectures/Advanced-Statistics-Verkerke.pdf

NEYMAN

CONSTRUCTION
DECONSTRUCTED

- Neyman invented this
procedure as a “quality
control” procedure. His
goal was to guarantee that
intervals from different
people would be
comparable.

2024 INFN SoS

from W. Verkerke

The confidence belt can constructed in advance of any
measurement, it is a property of the model, not the data

Given a measurement xq, a confidence interval [6,,6.] can be
constructed as follows

The interval [6_,0,] has a 68% probability to cover the true value

Y

>

observable x
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PHYSTAT 2023: Stanley, Zhu, Kuusela

PROGRESS IN UNFOLDING

le3

[ True Bin Expected Counts

Impor.tant physics to?l f?r theory- 5] T Loastoaueres
experiment communication. T ro
" Avoids theorists having to turn their calculations into 41 [
full-fledged simulations. ll-_
-~ 3—
3
5 21 =1
. : : TTT Tl
Exciting progress with many open questions [T HH H
for future work. ' TT IT i
T
0 T -.-T"‘T ITl-- =
! - !
_1_
-6 -4 -2 6 2 4 6
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PHYSTAT 2023: Capel, Dorigo

HIERARCHIES TO DIVIDE AND CONQUER

e High-level
parameters

Specifying intermediate ‘“‘quantities of Latent

interest” or “observables”. @ @ parameters

9JUalsju|

Not new: we calibrate energies of
individual hits and reconstruct momenta of @ @ @ +++ Observations
individual tracks.

Not a conclusion, just a feeling; a theme.

The model must
include a model of
Simulation " the absblute state-
i ode e-art (or even
extrapolated future
performance!) of
reconstruction and
inference to avoid

any misalignment

PartiCIe' Detector

Y _ \ Differentiable Amlysis
level truth | simulation reconstructed  model
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PHYSTAT 2023: Stefkova, Atkin, Capel
SoS 2024: Renga

LHC'S BUT ONE CORNER OF PARTICLE PHYSICS

Specific issues that deserve just
as much attention from
statisticians.

" Fertile (safe?, welcoming?) ground for
Bayesian methods.

2024 INFN SoS

LHCDb and Belle II: measurement style

For measuring 9 of rare B-decays LHCb uses mostly relative and Belle II absolute approach:

B+ J/ + —K+ NB+ TS
O BB > wtuuty) = BB* = Iy — whu k) x S8 IV = KT (B* = p*ppty)

eBt - ptu—puty) NB* = Jly( — ptpu")K*)
NB* - K*tvp
° BB > K'vi) = ( _)
e(B* - K*vp)
signal beam cross section detector
) Emax -\ ~ N e m— -
1 -
ol = P(va — v5) x ®(E,) x 0(E,), @) x «(7) dE,
Emin e . 8 =
nuisance parameters
Q.4 & £ & e | & ¢ }x &
R\ & T \[7 1 +
e I, :( ‘:\- 1IN -:I, = T - k‘:) . \L"{/:’;- 1 .{j‘<\\l/‘ N \\;/.’f s a
©) O (g ® ® (g ® | & O\O O/O\O ©) (5 o (@DRANDREDAVID 115
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THE BULK AND THE TAILS

BSM physics unlikely to be the obvious stuff
already looked for in the last 40 years.
* Must be within reach and be very subtle (bulk), or

* Out of reach and very energetic (tails).

Requiring same support as the SM simulation
does not cover second case above.

" |l.e. events beyond SM sim. support that could still be
SM.

= Connected also to amount of SM sim. that can be
afforded.

Can outlier estimation come to the rescue?

2024 INFN SoS

Broad resonance

PHYSTAT 2023: Grosso, Chakravarti

Narrow resonance

1D, A)=50.43, Z-score=4.56
10 Signal shape REFERENCE
3 DATA °e 7RECO

10%}

|
{
10°}

D, A)=45.29, Z-score=4.12
102 Signal shape REFERENCE
3 DATA °s 7RECO

Excégs in the tail

D, A)=26.31, Z-score=2.16
Signal shape REFERENCE
3 DATA °es 7RECO

. 4,4 %

Signal shape
r RECO/REF ||
¢ ¢ DATA/REF
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PHYSTAT 2023: Kagan, * Definition courtesy of Cousins

ML FOR Al — L.E. FOR ACTUAL INTELLIGENCE®

Progress: agreement that
optimality and correctness

>180:1.11l]||xl]levllxl||x|xx|xv||]||:.|||v1‘vvu:
8 . ATLAS L . d z::suZSGeV)
o 160-H — zz* -4l i
are not the same ; fieat Q[ eI e o
y Question of optimality: g1op -
" 90% of cases.

7 Uncertainty

* Did ML get best reconstruction or event selection?

* Effects definition of discriminating variables, but
- 10% of cases. doesn’t affect compatibility with data

* Can have dire consequences.

* Can live with consequences.

Things that affect p(-| 1(6))

%O 90 100 110 120 130 140 150 160 170
2 m,, [GeV]
Questions of correctness:

* Did ML learn an accurate fast simulation?
* Did ML learn a good background estimate?

« Effects statistical model & compatibility with data! R

2024 INFN SoS
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PHYSTAT 2023: Kagan, Manole

ML FOR Al — |.E. FOR ACTUAL INTELLIGENCE

4 Yo
Progress: agreement that o »
. . = A D £
optimality and correctness s 4  sigrregon) . %
h & 4 Yo 2
are not the same. z >
© B C a
= Q0% of cases. g 2
- A
* Can live with consequences.
0 > _I T 1% I T T 7T I T 1 [ T | e | [ T 1171 l T 171 l L B B | l_ > _l | B LR g | I T 111 I T N- 40 l LI T I P | T l T 1 l L I_‘
* 10% of cases. & 6000~ ATLAS Preliminary [ Normalized 2b Data— 8 6000~ ATLAS Preliminary [ Reweighted 20 Data—|
wn o Fain 1 W 3 wn - Ty 1 R E
* Can have dire consequences. N sooof- sronr 1P N\ Stat. Error = N s0of- Lo 18P N\ Stat. Error 4
2 E + 4bData 3 £ - - + 4bData :
D 4000~ 3 S 4000~ k=
L - = w = =
ABCD excellent playground ao00 - E 000 :
to test and learn. 2000 . ‘”‘m; =
1000 = — 1000 = —
- AISO on denSIfy Iearnlng vS OT o I | = e | l =R jeng! I L= o ' b ) e | I | 0 B2 B | 4 J I; o:l | e S I gyt I =gy I g e ped | Y R | + ‘I ’“
1 1-5 T T T T T 1 | G P | T | B | | b5 B | | [ | L 1.5 N O | L T Al T T T T 1 T T T T T 1171
mapping. 5 :l T T _._I T T T I: 5 :I T T T T T T 1:
S 1.0 B _-__._—0——0— ——— & . S 10 - Sms AR _.\_\—Q—_t_ i -
o E“-.-*—.. °g L g o . :.__.__ pas ~ar e CRRRRR N N
< - &) < - -
05 >_l { ] 241 ] [ | - l L1 [ | | B | l ] = [ [ b5 | I ) - = 05 _] [ | I | R ] I | B B | l L1 | [ ! 3P b | I 11 | I L L1 l“
300 400 500 600 700 800 900 1000 ~ 300 400 500 600 700 800 900 1000
muy [GeV] muH [GeV]
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PHYSTAT 2023: Kagan, Dorigo, ...

ML FOR Al — |.E. FOR ACTUAL INTELLIGENCE

Large potential and broad applicability
* Detector operation.

* Construct observables.

* Detector designs.

* Model-independent methods vs SM sim. statistics.

= Skirt systematically-affected phase spaces.

My take: algorithms can more easily explore
outside the box iff we manage to write loss
functions that can do that.

Also, ML is not yet wise.

2024 INFN SoS
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