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SYSTEMATIC UNCERTAINTIES AND 
NUISANCE PARAMETERS

A. David (CERN and IST-Lisboa)



ABOUT THE SPEAKER

Detector builder, Nature scrutiniser, 
Engineer botherer, and Theory disprover.

PhD in NA60, until 2013 in CLOUD, and 
CMS since 2006:
­ CMS ECAL, 1st LHC single isolated photon cross-

section measurement, then two photons, then one 
Higgs, then COMBINE Higgs analyses, then Higgs 
co-convener.

­ Presently building CMS HGCAL for Phase 2 
#LifeWithHexagons.

Profiled as many nuisance parameters as 
there are millionaires in the world.
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LIMITED ACCEPTANCE WARNING

👷  I am not a statistician, just a physicist trying to be more accurate.
­ Since 2000 that physicists and statisticians meet in PHYSTAT to figure out many of these issues.

🪟  This view is incomplete and has biases.
­ Both are my fault, not that of the sources I used.

🦄
  My goal: share some of what I have found useful when building an analysis.
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BEFORE DINNER ANDARE ALLA SPIAGGIA

1. 📏 What are systematic uncertainties.

2. ⚗ How we account for them using nuisance parameters.

3. ⚙ How frequentist inference is done in the present of such beasts.

4. 🧐 How to live with them and answer your reviewers’ questions.

5. 🗺 Walkthroughs of practices and caveats from experience in the wild.

☝ Interrupt whenever you have a question.
Worst that can happen is to discuss it alla spiaggia.

ℹ Personal disclaimer: publish frequentist results and take Bayesian decisions.
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SYSTEMATIC UNCERTAINTIES 
A. David (CERN and IST-Lisboa)
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ACCURACY AND
PRECISION
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TWO WORDS ON
ERROR AND UNCERTAINTY
What I call error is the result of a bias or mistake.

What I call uncertainty is the degree to which something is (un)known.

I think it’s a mistake to call errors uncertainties.

E.g., experimentalists correct for systematic effects (biases).
­ Corrections come with added uncertainty.
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BETTER ACCURACY AND
DETERIORATED PRECISION
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EXAMPLE: METAL RULER ON A HOT DAY

Givens:
­ Bar measured with ruler at T1 = 35 ºC.
­ Metal ruler calibrated at T0 = 20 ºC.
­ Ruler thermal expansion coefficient is α.

­ Measured in some way that will have uncertainty δα.

Estimates:
­ Central value: Lbar = L20 = L35 [ 1+ α (T0 - T1) ]

­ Reduced bias !

­ Unc. on Lbar includes uncertainties on L35, α, T1.
­ Additional uncertainty !

In practice: make δα and δT1 contributions 
smaller than that from δL35.
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Distributed Large-Scale Dimensional Metrology: New Insights

https://www.researchgate.net/publication/265505143_Distributed_large-scale_dimensional_metrology_New_insights
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Distributed Large-Scale Dimensional Metrology: New Insights

The reason why analyses 

are 10% inspiration 

and 90% perspiration

https://www.researchgate.net/publication/265505143_Distributed_large-scale_dimensional_metrology_New_insights


OUR SYSTEMATIC PLIGHT WITH BIAS
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LOOKING BACK TO LOOK FORWARD
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PDG RPP 2023

Yes, The PDG refers to uncertainties as “errors”. 🤷

https://pdg.lbl.gov/2023/reviews/contents_sports.html


LOOKING BACK TO LOOK FORWARD
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PDG RPP 2023

Yes, The PDG refers to uncertainties as “errors”. 🤷

PDG scales uncertainties to deal 
with discrepant measurements.

https://pdg.lbl.gov/2023/reviews/contents_sports.html


LOOKING BACK TO LOOK FORWARD
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PDG RPP 2023

Yes, The PDG refers to uncertainties as “errors”. 🤷

https://pdg.lbl.gov/2023/reviews/contents_sports.html


AND 
NUISANCE PARAMETERS

A. David (CERN and IST-Lisboa)



ANATOMY OF A LHC MEASUREMENT
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A theory
(e.g. the SM)

A detector
(with response that can 

be simulated)

Simulation Reconstruction

Event data
Summary data
(“observables”)

Reconstruction also includes any aggregation 
(binning) or transformation (machine learning, 
calibration).

Simulation encompasses both 
theory and experiment aspects.



ANATOMY OF A LHC MEASUREMENT
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A theory
(e.g. the SM)

A detector
(with response that can 

be simulated)

Simulation Reconstruction

Inference (an inverse problem)

Event data
Summary data
(“observables”)



IN PRACTICE…
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A theory
(with parameters µ)

A detector
f( e ; µ, ν )

Event data
{ e }

Simulation with imperfections (ν) using Monte Carlo sampling



IN PRACTICE…
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Event data
{ e }

Summary data
{ x }

Imperfect reconstruction



STEPS ALONG THE LHC WAY
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Simulation of
proton-proton collision
at the LHC involves
processes at many
energy scales.

Different regimes require
separate calculation approaches.

Implemented as chain of
separate simulation packages.

inspired by W. Verkerke



IMPERFECTIONS ALONG THE LHC WAY
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Ingredient Estimate from… Uncertainty estimates include…

Proton structure Empirical; no first principles calculation. Fit method and statistical 
uncertainties.

Matrix element calculation Perturbative calculation from theory, 
resummed or fixed-order.

Missing higher orders.

Parton shower Perturbative shower development. Matching energy scale to Matrix 
element calculation.

{Hadroniz,Fragment}ation MC simulation based on empirical 
models.

Tuneable parameters and different 
implementations.

Detector simulation GEANT4 or Fast simulation. GEANT tunes, parameterizations of 
digitisation.

Object reconstruction and 
identification

Custom-built algorithms
(e, µ, τ, γ, b/c/q/g-jets, …).

Data-driven calibration uncertainties.

inspired by W. Verkerke



ANATOMY OF A MEASUREMENT

2024 INFN SoS @DRANDREDAVID 35

A theory
(with parameters µ)

Summary data
{ x }

Inference on µ based on p(x, y; µ, ν)

🤔 What’s y and where did that come from ?

All the imperfections (ν)



THE STATISTICAL MODEL

The statistical model for inference is a function of the data given all parameters (Φ),

can be factorised into primary data, x, and auxiliary observables, y.
For k systematic uncertainties, each yk is paired with a nuisance parameter νk:

where pk are the probability distribution functions of the auxiliary observables.
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arXiv:2204.06614

⚠ 𝑥⃗ is one data point (that can be multidimensional).

https://arxiv.org/abs/2404.06614


THE STATISTICAL MODEL
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arXiv:2204.06614

Information on how well any 
“nuisance” is known.

The “counts” and their estimates’ 
dependency on all parameters.

https://arxiv.org/abs/2404.06614


SIMPLE COUNTING EXPERIMENT
­ Single bin, zero observed events.
­ ppX signal, 1.47 events expected.

­ µ = r is ppX rate modifier. r = 1 recovers theory prediction.
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


SIMPLE COUNTING EXPERIMENT
­ Single bin, zero observed events.
­ ppX signal.

­ µ = r is ppX rate modifier. r = 1 recovers theory prediction.

­ WW and tt contributions with 0.64 and 0.22 events 
expected.
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


SIMPLE COUNTING EXPERIMENT
­ Single bin, zero observed events.
­ ppX signal.

­ µ = r is ppX rate modifier. r = 1 recovers theory prediction.

­ WW and tt backgrounds.
­ lumi: all processes from simulation and since N = σ ℒ all 

yields affected by luminosity measurement uncertainty.
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


SIMPLE COUNTING EXPERIMENT
­ Single bin, zero observed events.
­ ppX signal.

­ µ = r is ppX rate modifier. r = 1 recovers theory prediction.

­ WW and tt backgrounds.
­ lumi: all processes affected by luminosity measurement 

uncertainty.
­ xs: ppX has theoretical uncertainty on cross-section (σ).
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arXiv:2204.06614
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SIMPLE COUNTING EXPERIMENT
­ Single bin, zero observed events.
­ ppX signal.

­ µ = r is ppX rate modifier. r = 1 recovers theory prediction.

­ WW and tt backgrounds.
­ lumi: all processes affected by luminosity measurement 

uncertainty.
­ xs: ppX has theoretical uncertainty on cross-section (σ).
­ nWW: WW yield estimated from 4 simulated events.
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arXiv:2204.06614

ℹ 0.64 yield ≡
0.16 factor × 4 counts

https://arxiv.org/abs/2404.06614


SIMPLE COUNTING EXPERIMENT
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arXiv:2204.06614

ℹ Bin rate estimate λ does 
not depend on yk, only νk !

https://arxiv.org/abs/2404.06614


UNCERTAINTIES, EFFECTS, AND NUISANCES
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Probability Density Functions for Positive Nuisance Parameters, arXiv:2204.06614

… the effect on the 
process normalisation.

… the probability distribution function 
appended to the statistical model.

For a log-normal systematic 
uncertainty that scales yields…

👌 Log-normals guarantee positive 
yields for any κ, ν input values.

You may also hear this p.d.f. referred to 
as “constraint term”.
This is because we can include external 
constraints to the statistical model by 
appending more terms here.

https://www.physics.ucla.edu/~cousins/stats/cousins_lognormal_prior.pdf
https://arxiv.org/abs/2404.06614


UNCERTAINTIES, EFFECTS, AND NUISANCES
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


THE LIKELIHOOD FUNCTION

For d entries in the data set we tack on more “counts” terms to define the likelihood 
function:
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


THE LIKELIHOOD FUNCTION

For d entries in the data set we tack on more “counts” terms to define the likelihood 
function:
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arXiv:2204.06614

But what is this good for ?

https://arxiv.org/abs/2404.06614


THE LIKELIHOOD FUNCTION

For d entries in the data set we tack on more “counts” terms to define the likelihood 
function:

1. Frequentist inference: ν profiled in a likelihood ratio:

2. Bayesian inference: νk marginalised/averaged over their priors πk:
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


FREQUENTIST INFERENCE WITHOUT NUISANCES

Statistical methodology in particle physics is (very) predominantly frequentist.

Notion of coverage is central to define uncertainties (68%, 95%).

Computational procedures for frequentist methodology quite different from Bayesian:
influences practical aspects of how systematics uncertainties are modelled.

30-second nutshell reminder of Frequentist approach:
­ Observations { x } summarized by test statistic q(µ),

typically a likelihood ratio testing for compatibility of the data with a certain hypothesis µ = µ0.
­ Knowing the distribution of q(µ) under given hypotheses µ = µi define a 

acceptance interval that contains 68% of the observed outcomes.
­ A confidence belt maps the acceptance interval for each value of µ, and allows to construct a 

confidence interval in µ for a given observed value of q(µ).
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inspired by W. Verkerke



observable x

FREQUENTIST UNCERTAINTIES IN HEPP
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inspired by W. Verkerke and N. Smith

x = 3.3

pa
ra

m
et

er
 μ

Confidence 
Interval on μ 

Acceptance
Interval for 
µ = 6.5 

Single measurement 
interval inversion

Neyman construction of the confidence belt
Acceptance intervals defined by

𝑃 𝑥!"# < 𝑥 < 𝑥$%&$; 𝜇 = *
'!"#

'$%&$
𝑝 𝑥; 𝜇 	𝑑𝑥 ≥ 1 − 𝛼

where 𝟏 − 𝜶 is the confidence level.

ℹ  Procedure in a nutshell:

1. For a given µ generate distribution of x, p(x; µ).

2. Use p(x; µ) to determine xlow and xhigh and make horizontal line.
­ NB: acceptance interval depends on 1-α choice and can be one-sided (for limits).

3. Repeat for many values of µ to construct the belt.

4. For a given x = 3.3 look up the confidence interval for µ from the belt. 

(Detailed step-by-step in backup.)



observable x

FREQUENTIST UNCERTAINTIES IN HEPP
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inspired by W. Verkerke and N. Smith

x = 3.3

pa
ra

m
et

er
 μ

LR test statistic

pa
ra

m
et

er
 μ

Confidence 
Interval on μ 

Acceptance
Interval

LR Acceptance
Interval q(μ)

f(q(μ)|μ)
Single measurement 
interval inversion

For many measurements 
inversion via Likelihood Ratio, q.

Confidence 
Interval on μ 

qnn(μ) ⚠ Here there are no nuisance 
parameters (cf. D. van Dyk’s 2.3).
μ is the only parameter and 

𝑞!! 𝜇 = −2 ln ℒ($) ℒ(&$)

ℹ More on the CLs 
criterion in backup.



FREQUENTIST UNCERTAINTIES IN HEPP
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inspired by W. Verkerke and N. Smith

LR test statistic

pa
ra

m
et

er
 μ

LR Acceptance
Interval

Significance against 
μ = 0 hypothesis

q(μ)

f(q(μ)|μ)
For many measurements 
inversion via Likelihood Ratio, q.

Confidence 
Interval on μ 

Here there are no nuisance 
parameters (cf. D. van Dyk’s 2.3).
μ is the only parameter and 

𝑞!! 𝜇 = −2 ln ℒ($) ℒ(&$)
𝜇 = #𝜇

A.k.a. “best-fit”

qnn(μ)



ASYMPTOTIC APPROXIMATION
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inspired by W. Verkerke and N. Smith

LR test statistic

pa
ra

m
et

er
 μ

LR Acceptance
Interval

Confidence 
Interval on μ 

LR asymptotically 
distributed as log(χ2) 
and independent of µ

Using asymptotics
(“Wilks’ theorem”)
results in exactly 
rectangular belt

q(μ)

f(q(μ)|μ)

qnn(μ)



ADDING NUISANCES
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inspired by W. Verkerke

LR test statistic

pa
ra

m
et

er
 μ

LR Acceptance
Interval

Confidence 
Interval on μ 

LR asymptotically 
distributed as log(χ2) 
and independent of µ

q(μ)

f(q(μ)|μ)

Including nuisance parameters in 
profile likelihood ratio 
broadens the interval

𝑞!! 𝜇 = −2 ln
ℒ(𝜇) 
ℒ(𝜇̂)

,𝑞'() 𝜇 = −2 ln
ℒ(𝜇, ..⃗𝜈(𝜇)) 
ℒ(𝜇̂, .⃗𝜈)

Using asymptotics
(“Wilks’ theorem”)
results in exactly 
rectangular belt

qLHC(μ)

qnn(μ)



ADDING NUISANCES
The workhorse of inference with nuisances at the LHC.
­ Confidence regions, confidence intervals, and upper limits.
­ Beware caveats concerning the asymptotic approximation.

Computing !𝑞!"# 𝜇  is relatively cheap even when dimension of 
𝜈 is large.
­ No practical penalty to introduce many nuisance parameters.
­ Many LHC analyses have 102 to 103.
­ Combined CMS+ATLAS analyses can reach 104.
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inspired by W. Verkerke

Including nuisance parameters in 
profile likelihood ratio 
broadens the interval

,𝑞'() 𝜇 = −2 ln
ℒ(𝜇, ..⃗𝜈(𝜇)) 
ℒ(𝜇̂, .⃗𝜈) *⃗𝜈 is the overall best-fit value of 𝜈, i.e. when 𝜇 = 𝜇̂.

**⃗𝜈(𝜇) is the best-fit value of 𝜈	 for a specific value of 𝜇.



THE 𝜇 = 0	CASE – “SIGNIFICANCE”

How unlikely are the data 
under the 𝜇 = 0 hypothesis?
­ Asymptotics also available.
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arXiv:2204.06614

𝑞𝟎 = ,𝑞'() 𝟎

= −2 ln
ℒ(𝟎, ..⃗𝜈(𝟎)) 
ℒ(𝜇̂, .⃗𝜈)

https://arxiv.org/abs/2404.06614


SIMPLE COUNTING EXPERIMENT – SIGNIFICANCE
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Makes sense !



SIMPLE COUNTING EXPERIMENT – BEST-FIT
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Makes sense !



SIMPLE COUNTING EXPERIMENT – LIMITS
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Runs the full asymptotic frequentist machinery for 

95% CL upper limit on rate modifier on both 

expected and observed data.



HALF-TIME 

📏  All imperfections should give rise to 
an uncertainty.
­ Some are more important than others.
­ Some are important to one inference but not 

another.

📚  There are decades of practice on how 
to include them in the statistical model.
­ Make use of the tools that already exist.

⛓💥  Both Frequentist and Bayesian 
methods fail in some cases.
­ Make sure to understand their limitations and 

strengths.
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ONE LISTING OF NUISANCE PARAMETERS

Luminosity

Detector and per-particle type
­ Acceptance
­ Efficiency and misidentification
­ Energy scales
­ Energy resolutions

Templates of processes:
­ Theory total cross section uncertainty
­ Theory modelling uncertainties
­ Limited MC statistics

Empirical process shape modelling
­ Parameterisations
­ Non-parametric smoothing
­ Morphing of templates

Nuisance parameters can be constrained 
by:
­ Detector calibration data
­ Control samples with different event selection
­ The data distributions
­ Measurements from other experiments
­ Theory calculations
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O. Behnke after PHYSTAT Systematics 2021

https://www.desy.de/~obehnke/PHYSTAT_SYS/systematics2.pdf
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Tomb of the Diver

https://en.m.wikipedia.org/wiki/Tomb_of_the_Diver
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Tomb of the Diver

“Counts”

Systematics and Nuisances

Ph
ys

ici
sts

https://en.m.wikipedia.org/wiki/Tomb_of_the_Diver


ERRORS –  – 
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Control 
region(s)

Signal 
region(s)

Calib. Calib.

arXiv:2002.06398

https://arxiv.org/abs/2002.06398


ERRORS –  – 
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Control 
region(s)

Signal 
region(s)

Background 
process(es)

Background 
process(es)

Signal 
process(es)

Procedure

Theory

Calib.

Theory

Calib.

arXiv:2002.06398

https://arxiv.org/abs/2002.06398


A REVERSIBLE PROCESS

Data also used to:
­ Calibrate.
­ Constrain theory parameters.
­ Constrain non-perturbative inputs.

­ Perennial concern that parton distribution function fits 
may subsume BSM physics effects.

Same events ≠
(Double-counting = Double-dipping)
­ Avoiding circularity always in the back of 

our minds.
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Region(s)Region(s)

Process(es)

Process(es) Theory

Theory

Process(es) Calib.



BEYOND S AND B – PROCESSES

Quantum-mechanically 
 example.

­ Use interference as systematic?
­ Avoid interfering phase space?
­ Estimate effects on the total?
­ …

Generally-speaking there are:
­ Processes sensitive to the inference you want to 

make.
­ Processes that are not.

­ Some you can estimate from MC.
­ Others may be better estimated from data.
­ Many have an impact on the power of your inference.

­ Detector limitations (like noise).
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arXiv:1910.09503

More interesting Less interesting

https://arxiv.org/abs/1910.09503


CONTRIBUTIONS,
NOT CONTAMINATION
Simultaneous inference accounts for 
all processes in all regions.

Pure regions not as important as 
independent ones.
­ Covering similar kinematics minimises 

extrapolation systematic uncertainties !
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CMS-HIG-16-043

Contributions in signal-sensitive region(s) 
constrained/estimated/extrapolated from dedicated control regions.

https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-16-043/index.html


THE ASIMOV DATASET

Procedure
­ Fix all parameters of the model.
­ Estimate corresponding expected counts.

Zero statistical fluctuations.
­ Crucial property to explore the model’s power 

without (Nature’s) randomness added.

First used by CCGV for median significance 
and inspired by I. Asimov’s “Franchise” short 
story.
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plots from A. Tarek

https://arxiv.org/abs/1007.1727
https://en.wikipedia.org/wiki/Franchise_(short_story)
https://cds.cern.ch/record/2696211


PULLS, 
CONSTRAINTS, 
IMPACTS
Essential diagnostics that the tools 
can produce for you.

They cannot tell you whether you are 
missing something in your statistical 
model.

They provide insight on how the 
statistical model and the data 
interact and affect your inference.
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


PULLS, 
CONSTRAINTS, 
IMPACTS
How much does 𝝁 change when 
changing 𝝂 ?
­ Fix 𝜈$ to "𝜈$ ± Δ𝜈$ and refit all other 

parameters (𝜇, 𝜈%&$).
­ Δ𝜈 typically chosen as 1 standard deviation value.

­ Impact of 𝜈̂ + Δ𝜈 in red.
­ Impact of 𝜈̂ − Δ𝜈 in blue.

Two different cases shown:
­ Full boxes are the impact after the fit to the 

Asimov dataset (“expected”).
­ ⚠ “expected” does not imply “correct”; it’s just a 

reflection of what to expect with this choice of statistical 
model and observables.

­ Lines show the impact after the fit to collision 
data (“observed”).
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


PULLS, 
CONSTRAINTS, 
IMPACTS
How much information is gained 
on each 𝝂 ?

Three things shown:
­ ±𝟏 represents what you put in the model.
­ Grey bars are the uncertainty after the fit 

to the Asimov dataset (“expected”).
­ ⚠ “expected” does not imply “correct”; it’s just a 

reflection of what to expect with this choice of 
statistical model and observables.

­ Black uncertainties are the uncertainty 
after the fit to collision data (“observed”).
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


PULLS, 
CONSTRAINTS, 
IMPACTS
How much information is gained 
on each 𝝂 ?

Three things shown:
­ ±𝟏 represents what you put in the model.
­ Grey bars are the uncertainty after the fit 

to the Asimov dataset (“expected”).
­ ⚠ “expected” does not imply “correct”; it’s just a 

reflection of what to expect with this choice of 
statistical model and observables.

­ Black uncertainties are the uncertainty 
after the fit to collision data (“observed”).
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arXiv:2204.06614

You can see here an expected uncertainty ~40% smaller 
than what was put in the model.

So if someone says you should be “conservative” and put a 
large(r) uncertainty in the model, that may have zero impact 

on the analysis if the data is able to constrain it.
This is not necessarily a problem; e.g. here we have a theory 

uncertainty that was hard to gauge in the first place.

https://arxiv.org/abs/2404.06614


PULLS, 
CONSTRAINTS, 
IMPACTS
How much information is gained on 
each 𝝂 ? 

Different datasets tell us different things:
­ Pre-fit expected (Asimov)

­ “What power is this model expected to have ?”

­ Pre-fit toy data sets
­ “What do statistical fluctuations imply for that power ?”

­ Post-fit expected (Asimov)
­ From partial data, e.g. only (some) CRs.
­ From whole data: CRs + SRs.

­ Post-fit observed
­ Partial data or whole data.
­ Include statistical fluctuations.

­ Post-fit toy data sets
­ “How unlucky was the observed ?”
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


CONSTRAINING 
NUISANCES ?
From 𝑡 ̅𝑡 cross-section 
measurement: 𝑒±𝜇∓, 𝜇#𝜇$, 
and 𝑒#𝑒$.

“effects of colour 
reconnection (CR) processes 
on the top quark final state”

Is constraining these ok ?
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CMS-TOP-17-001

https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-17-001/index.html


USE THE TOOLS TO SEE 
THE INGREDIENTS

Example analysis with two templates, each with a 
systematic shape variation:
­ Observable x is a MVA output: more background at lower 

values and more signal at larger values.
­ One can see from the data that there is probably no signal in Nature.

­ Signal syst. uncertainty
controlled by nuisance parameter σ.

­ Background syst. uncertainty
controlled by nuisance parameter α.
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


USE THE TOOLS TO SEE 
THE EFFECTS
Top panel – bin contents:
­ Black points: observed value.
­ Red: pre-fit estimate and uncertainty.
­ Blue: ditto post-fit.

Middle panel – bin contents differences:
­ Difference between estimates (λ) and observations (n) both 

pre-fit and post-fit.
­ Post-fit reduces discrepancies between model and data.

Lower panel – estimate uncertainties:
­ Ratio between the estimated uncertainty post-fit and 

estimated uncertainty pre-fit.
­ Post-fit reduces estimated uncertainties.
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arXiv:2204.06614

https://arxiv.org/abs/2404.06614


ASTRONOMERS AND CALIBRATORS

All-in-one in HEPP but not universal.
­ Also makes HEPP papers have very long, uninformative, author lists.

Cases in LHC where “interpreters” are “calibrators”.

Cases where “interpretation” is blunted to not step beyond 
“calibration” stated ability.

My rule of thumb: if an analysis constrains a calibration-
provided nuisance parameter, stop and think.
­ And then possibly take action.
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PHYSTAT 2023: van Dyk 

https://www.birs.ca/events/2023/5-day-workshops/23w5096


ALTERNATIVES AND MORPHING

Some alternatives are physical deformations 
with meaning.
­ “Average”/morphing makes sense.

Some alternatives are really just alternatives.
­ And if they end up mattering we’ll likely throw one out 

as unphysical. (Cousins)

Perturbative theory uncertainties are a 
whole different beast altogether.
­ Limited but non-zero knowledge on the next term.
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PHYSTAT 2023: Brenner, Manole, Windischhofer, Tackmann, Cousins

https://www.birs.ca/events/2023/5-day-workshops/23w5096


MORPHING

Nuisance parameters are continuous, 
but samples are generated only a 
specific values.

Not just interpolating, but also 
extrapolating.
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from W. Verkerke



MORPHING

Main workhorse 
at LHC.
­ Several limitations 

known.

Now modern 
technology for 
multi-dimensional 
morphing now 
available.
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from L. Heinrich

Piecewise linear
interpolation
response model
for a one bin

Bin-by-bin piece-wise interpolation
robust enough for small-to-moderate distortions 

typically introduced by systematic variations

𝜈 = -1 𝜈 = 0 𝜈 = +1

𝜈

𝜈



ALTERNATIVES
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from W. Verkerke

ν with 10× 
reduced
uncertainty

Are we really gaining any 
knowledge about Nature ?

Pythia

Herwig

Sherpa

Nature

Next year’s
generator

Herwig

Pythia

Nature?



LIMITED SIMULATION STATISTICS

Account for uncertainties due to 
the limited sample size used 
when creating templates.
­ Barlow-Beeston procedure widely 

available.
­ “Lite” version reduces number of 

nuisance parameters.
­ No one prescription on how to merge nuisances.
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From A. Gilbert via A. de Wit



LIMITED SIMULATION STATISTICS

Effects from “horizontal” 
migration of events.
­ Induce “vertical” effects.
­ Not related to bin-by-bin 

uncertainties (Barlow-Beeston).
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from C. Bronner via N. Wardle



“BEING CONSERVATIVE”
Should uncertainties be correlated or uncorrelated ? It depends.

Consider two bins, Bi with yields Si.
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from W. Verkerke

NP: 10% bkg uncertainty
correlated modeling

NP1: 10% bkg unc. – bin 1
NP2: 10% bkg unc. – bin 2

NP: 10% bkg uncertainty
anti-correlated model

B1 B2

S1

S2

B1 B2

S1

S2

B1 B2

S1

S2

POI ∝ S1 + S2

POI ∝ S1 / S2

Conservative

Very Optimistic Conservative

Very OptimisticAppropriate ?

Appropriate ?

⚠ Also: mass measurements 
and scale uncertainties.



“BEING CONSERVATIVE”
Should uncertainties be correlated or uncorrelated ? It depends.

Consider bins with very different numbers of “counts”.
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from W. Verkerke

One NP representing
10% bkg uncertainty

correlated effect in both bins

ML fit
Data 
Uncertainty

‘post-fit’‘pre-fit’

One NP representing
5% bkg uncertainty

correlated effect in both bins

Uncertainty reduction 
in both bins from
contraining power of 
left bin alone !



ALTERNATIVES AND MORPHING

Some alternatives are physical deformations 
with meaning.
­ “Average”/morphing makes sense.

Some alternatives are really just alternatives.
­ And if they end up mattering we’ll likely throw one out 

as unphysical. (Cousins)

Perturbative theory uncertainties are a 
whole different beast altogether.
­ Limited but non-zero knowledge on the next term.
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PHYSTAT 2023: Brenner, Manole, Windischhofer, Tackmann, Cousins

https://www.birs.ca/events/2023/5-day-workshops/23w5096


DISCRETE PROFILING

Invented in CMS 𝐻 → 𝛾𝛾 to deal with different parametric background choices.
­ ATLAS uses “spurious signal” (different) method.

Extensively validated to not bias inference.
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arXiv:1408.6865

https://arxiv.org/abs/1408.6865


THE 🪄 OF DISCRETE PROFILING

Perhaps there is hope to understand 
discrete profiling in the model selection 
context.
­ How do you feel about model averaging being the 

(weighted) average of estimates across different 
models?

Unavoidable comparison with spurious 
signal; both are prescriptions using 
statistical uncertainty under the signal as 
the gauge
­ Discrete profiling functions are chosen to have bias 

smaller than O(10%) stat. unc.
­ Spurious signal is chosen on similar basis and 

added to signal model. 
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PHYSTAT 2023: Schafer, Wardle, Kania, Brenner, Tackmann

https://www.birs.ca/events/2023/5-day-workshops/23w5096


A WELCOME SYSTEMATISATION

OPAT vs APAST

Combination of measurements vs 
combined measurement.

Discussion on simplified likelihoods:
­ Taylor expansion seems to be founded.
­ For PDFs a whole different story: cumulants, 

saddle point approximation, etc.
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PHYSTAT 2023: Barlow, Lockhart, Wardle, Volobuev, Brazzale

https://www.birs.ca/events/2023/5-day-workshops/23w5096


APAT – ALL PARAMETERS AT A TIME
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All fixed to MLE
All profiled

arXiv:2002.06398

https://arxiv.org/abs/2002.06398


= Total unc. ⊖ Stat. unc.

APAT – ALL PARAMETERS AT A TIME
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All fixed to MLE

Subsets profiled

All profiled



BETTER ASYMPTOTICS

Sine qua non for ”errors on errors” that can 
benefit all.

Correction can also be used as coverage 
diagnostic tool.

I wonder what happens in asymmetric 
cases…
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PHYSTAT 2023: Canonero, Cowan

https://www.birs.ca/events/2023/5-day-workshops/23w5096


HOW CERTAIN IS THAT UNCERTAINTY?

“Unleash the tails !”

Discussion focused on applying 
these foremost to theory inputs.
­ For exp. uncs. I wonder what the 

evaluation experiment_k by physicist_i 
would be.
­ Especially when k = i.

­ Lots of interesting ideas to pursue to 
understand how it deals with outliers.

­ I know at least one theorist seriously 
studying the method.
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PHYSTAT 2023: Canonero, Cowan

https://www.birs.ca/events/2023/5-day-workshops/23w5096


“LAST MILE” CORRECTIONS

Simulation imperfections can have 
substantial impact on inference.

Example evolution with time:
­ “Multiply and smear”.
­ 1-D quantile regression.
­ Chained quantile regression.

Is this the best that can be done?

Heard at PHYSTAT 2023:
­ Multi-dim. quantile regression.
­ Multi-dim. CDF.
­ Optimal Transport maps.
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arXiv:2208.12279, FNAL LPC seminar, PHYSTAT 2023: Manole

https://arxiv.org/pdf/2208.12279.pdf
https://indico.cern.ch/event/1006100
https://www.birs.ca/events/2023/5-day-workshops/23w5096


≥1 PARAMETERS OF INTEREST

Joint inference can and should be 
done.

Same asymptotics but thresholds 
for regions depend on number of 
parameters.
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Thanks to Wald and Engle !

PDG RPP 2023, arXiv:2204.06614

1σ 2D region: 
Δ𝑞 = 2.30

1σ 1D intervals: 
Δ𝑞 = 1.00

https://pdg.lbl.gov/2023/reviews/rpp2023-rev-statistics.pdf
https://arxiv.org/abs/2404.06614


KNOW YOUR APPROXIMATIONS
Background with 20% uncertainty modelled in three different ways.
­ Option 1 (Gaussian) 𝑝 𝑥; 𝜇, 𝜈* = 𝑃 𝑥; 𝜇 ⋅ 𝑠 + 𝑏 1 + 𝛿 ⋅ 𝜈* ⋅ 𝑁 𝑦; 𝜈* , 1 .
­ Option 2 (Log-normal) 𝑝 𝑥; 𝜇, 𝜈* = 𝑃 𝑥; 𝜇 ⋅ 𝑠 + 𝑏 ⋅ 𝜅+' ⋅ 𝑁 𝑦; 𝜈* , 1 .
­ Option 3 (Gamma) 𝑝 𝑥; 𝜇, 𝜈* = 𝑃 𝑥; 𝜇 ⋅ 𝑠 + 𝑏 ⋅ 𝜈* ⋅ 𝑃 𝑛,-; 𝑏,- ⋅ 𝜈* .

𝑠 = 25, 𝑏 = 25, 𝑥 = 37
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plots from N. Smith

𝑞 𝜇 = −2 ln
ℒ(𝜇,LM𝜈*(𝜇)) 
ℒ(𝜇̂, M𝜈*)

𝜈 !𝜈 !𝜈 !

https://indico.cern.ch/event/1227742/contributions/5240048/attachments/2587176/4463719/CombineTutorial_Stats.pdf


SAVED BY THE C.L.T.
Background with 20% uncertainty modelled in three different ways:
­ Option 1 (Gaussian) 𝑝 𝑥; 𝜇, 𝜈* = 𝑃 𝑥; 𝜇 ⋅ 𝑠 + 𝑏 1 + 𝛿 ⋅ 𝜈* ⋅ 𝑁 𝑦; 𝜈* , 1 .
­ Option 2 (Log-normal) 𝑝 𝑥; 𝜇, 𝜈* = 𝑃 𝑥; 𝜇 ⋅ 𝑠 + 𝑏 ⋅ 𝜅+' ⋅ 𝑁 𝑦; 𝜈* , 1 .
­ Option 3 (Gamma) 𝑝 𝑥; 𝜇, 𝜈* = 𝑃 𝑥; 𝜇 ⋅ 𝑠 + 𝑏 ⋅ 𝜈* ⋅ 𝑃 𝑛,-; 𝑏,- ⋅ 𝜈* .

𝑠 = 10, 𝑏 = 25, 𝑥 = 37 ⇒ Small difference in the inference for this case.
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plots from N. Smith

Could go negative
 but w

ould 

require
 25/(0.2*25) ~ 5σ pull.

Won’t g
o negative

 and 

approximates G
amma method.

Most a
ccur

ate, but p
ossib

ly too 

invo
lved as nCR =

 25 is n
o 

longer “d
iscre

te”. 

https://indico.cern.ch/event/1227742/contributions/5240048/attachments/2587176/4463719/CombineTutorial_Stats.pdf


PARTING THOUGHTS

😅  You’ll spend a lot of time correcting 
measurements.
­ So make friends with the uncertainties that come 

with those corrections.

🫙  Whenever you have low counts, be 
very careful.
­ If you have zero counts, welcome to the club.

⚡  Profiling nuisances has great power.
­ Whether the power to constrain them is licit or not is 

another matter.
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FOR DISCUSSION
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https://phystat.github.io/Website/
https://arxiv.org/abs/2404.06614
https://arxiv.org/abs/2404.06614
https://indico.cern.ch/event/1051224
https://www.birs.ca/events/2023/5-day-workshops/23w5096


NOT ENOUGH TIME TO COVER DETAILS OF…

Multidimensional modern morphing.

“Marginalizing versus Profiling of Nuisance Parameters” arXiv:2404.17180

Diagonalization and externalisation of uncertainties.

Sampling nuisance parameters and constructing toy datasets.

The galaxy of asymptotics:
­ Wilks (single parameter),
­ Wald and Engle (multiple parameters), and
­ Chernoff and Self-Liang (parameters at boundaries).

The Trials Factor or Look Elsewhere Effect and Machine Learning.
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https://arxiv.org/abs/2404.17180


THE CLS CRITERION – 95% CL LIMIT EXAMPLE

2024 INFN SoS @DRANDREDAVID 105

arXiv:2204.06614

CLs =
𝑝.

1 − 𝑝*

Motivation and description in PDG RPP 40.4.2.4.

https://arxiv.org/abs/2404.06614
https://pdg.lbl.gov/2023/reviews/rpp2023-rev-statistics.pdf


POISSON EXAMPLE
WITHOUT NUISANCES

Model: 𝑝 𝑥; 𝜇𝑠 + 𝑏 = $QRS "T# $%&'

U!
­ Known (fixed!) background.

Test statistic: 𝑞W 𝜇 = −2 ln ℒ($) 
ℒ(&$)

­ Jagged behaviour of 𝑞' due to Poisson discrete 
nature, not by limited toy statistics (104 in this case).
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plots from N. Smith

𝑞"

“Wilks’ theorem”
in action

𝑞"

https://indico.cern.ch/event/1227742/contributions/5240048/attachments/2587176/4463719/CombineTutorial_Stats.pdf


NEYMAN CONSTRUCTION
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NEYMAN 
CONSTRUCTION 
DECONSTRUCTED
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from W. Verkerke

https://www.precision.hep.phy.cam.ac.uk/wp-content/people/mitov/lectures/GraduateLectures/Advanced-Statistics-Verkerke.pdf


NEYMAN 
CONSTRUCTION 
DECONSTRUCTED
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from W. Verkerke

⚠  This 1 − 𝛼 region is:
­ two-sided for intervals, and
­ one-sided for limits.

ℹ  1 − 𝛼 = 68% 
constructs ±1𝜎 intervals.

https://www.precision.hep.phy.cam.ac.uk/wp-content/people/mitov/lectures/GraduateLectures/Advanced-Statistics-Verkerke.pdf


NEYMAN 
CONSTRUCTION 
DECONSTRUCTED
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from W. Verkerke

https://www.precision.hep.phy.cam.ac.uk/wp-content/people/mitov/lectures/GraduateLectures/Advanced-Statistics-Verkerke.pdf


NEYMAN 
CONSTRUCTION 
DECONSTRUCTED

2024 INFN SoS @DRANDREDAVID 111

from W. Verkerke

ℹ  Neyman invented this 
procedure as a “quality 
control” procedure. His 
goal was to guarantee that 
intervals from different 
people would be 
comparable.

https://www.precision.hep.phy.cam.ac.uk/wp-content/people/mitov/lectures/GraduateLectures/Advanced-Statistics-Verkerke.pdf


ADDITIONAL TOPICS
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PROGRESS IN UNFOLDING

Important physics tool for theory-
experiment communication.
­ Avoids theorists having to turn their calculations into 

full-fledged simulations.

Exciting progress with many open questions 
for future work.
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PHYSTAT 2023: Stanley, Zhu, Kuusela

https://www.birs.ca/events/2023/5-day-workshops/23w5096


HIERARCHIES TO DIVIDE AND CONQUER

Specifying intermediate “quantities of 
interest” or “observables”.

Not new: we calibrate energies of 
individual hits and reconstruct momenta of 
individual tracks.

Not a conclusion, just a feeling; a theme.
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PHYSTAT 2023: Capel, Dorigo

https://www.birs.ca/events/2023/5-day-workshops/23w5096


LHC’S BUT ONE CORNER OF PARTICLE PHYSICS

Specific issues that deserve just 
as much attention from 
statisticians.
­ Fertile (safe?, welcoming?) ground for 

Bayesian methods.
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PHYSTAT 2023: Stefkova, Atkin, Capel
SoS 2024: Renga

https://www.birs.ca/events/2023/5-day-workshops/23w5096


THE BULK AND THE TAILS

BSM physics unlikely to be the obvious stuff 
already looked for in the last 40 years.
­ Must be within reach and be very subtle (bulk), or
­ Out of reach and very energetic (tails).

Requiring same support as the SM simulation 
does not cover second case above.
­ I.e. events beyond SM sim. support that could still be 

SM.
­ Connected also to amount of SM sim. that can be 

afforded.

Can outlier estimation come to the rescue?

2024 INFN SoS @DRANDREDAVID 116

PHYSTAT 2023: Grosso, Chakravarti

https://www.birs.ca/events/2023/5-day-workshops/23w5096


ML FOR AI – I.E. FOR ACTUAL INTELLIGENCE*

Progress: agreement that 
optimality and correctness 
are not the same.
­ 90% of cases.

­ Can live with consequences.

­ 10% of cases.
­ Can have dire consequences.
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PHYSTAT 2023: Kagan, * Definition courtesy of Cousins

https://www.birs.ca/events/2023/5-day-workshops/23w5096


ML FOR AI – I.E. FOR ACTUAL INTELLIGENCE

Progress: agreement that 
optimality and correctness 
are not the same.
­ 90% of cases.

­ Can live with consequences.

­ 10% of cases.
­ Can have dire consequences.

ABCD excellent playground 
to test and learn.
­ Also on density learning vs OT 

mapping.
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PHYSTAT 2023: Kagan, Manole

https://www.birs.ca/events/2023/5-day-workshops/23w5096


ML FOR AI – I.E. FOR ACTUAL INTELLIGENCE

Large potential and broad applicability
­ Detector operation.
­ Construct observables.
­ Detector designs.
­ Model-independent methods vs SM sim. statistics.
­ Skirt systematically-affected phase spaces.
­ …

My take: algorithms can more easily explore 
outside the box iff we manage to write loss 
functions that can do that.
Also, ML is not yet wise.
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PHYSTAT 2023: Kagan, Dorigo, …

https://www.birs.ca/events/2023/5-day-workshops/23w5096

