Motivating Problems Statistical Criteria for Discovery Mass Hierarchy & CP-violation Bump Hunting Advice and Resources

Statistical Quantification of Discovery Bayesian and Frequentist Perspectives

David A. van Dyk

Statistics Section, Imperial College London

INFN School on Statistics 2024

Mass Hierarchy & CP-violation Bump Hunting

Advice and Resources

Search and Discovery

2012-13 Higgs Discovery

The New Hork Times

Science

Physicists Find Elusive Particle Seen as Key to Universe

Scientific and Statistical Themes

- High-stakes science: discovery vs. estimation.
- Model selection is much harder than estimation.
- Frequentist and Bayesian methods: different conclusions.
- Is a non-partisan approach possible?

Motivating Problems	Statistical Criteria for Discovery	Mass Hierarchy & CP-violation	Bump Hunting	Advice and Resources
000	00000000000000000000000	000000	00000000000000	00000

Outline

- 2 Statistical Criteria for Discovery
- Mass Hierarchy & CP-violation
- 4 Bump Hunting

 Motivating Problems
 Statistical Criteria for Discovery
 Mass Hierarchy & CP-violation
 Bump Hunting
 Advice and Resources

Outline

- 2 Statistical Criteria for Discovery
- 3 Mass Hierarchy & CP-violation
- 4 Bump Hunting
- 6 Advice and Resources

Motivating Problem: Neutrino Oscillation

Neutrino Oscillation

- Neutrino created as electron, muon or tau may later be measured with different flavor.
- Flavor probability varies periodically as neutrino travels through space and *depends on several parameters*.

Mass Hierarchy

....ordering of the mass eigenstates

- normal ($\Delta m_{32}^2 > 0$) vs inverted hierarchy ($\Delta m_{32}^2 < 0$)
- $|\Delta m_{32}^2|$ well constrained, degeneracy of sign with θ_{23} or δ_{CP} .

CP-violation

- Is there evidence to counter $\delta_{CP} \in \{0, \pi\}$?
- Current data is limited.

Statistical Criteria for Discovery

Mass Hierarchy & CP-violation

Bump Hunting Advice and Resources

Motivating Problem: Higgs Search

Searching for a Bump above Background

- Expect excess counts at invariant mass of Higgs boson.
- Statistically: no bump vs bump.
- The Location of possible bump unknown.
- What is the bump location if there is no bump?

Outline

1 Motivating Problems

- 2 Statistical Criteria for Discovery
 - 3 Mass Hierarchy & CP-violation
- 4 Bump Hunting
- 5 Advice and Resources

Statistical Framework for Discovery

Model / Hypothesis Testing

- H_0 : The null hypothesis (e.g., no CP-violoation, $\delta_{CP} = 0$)
- H1: The alternative hypothesis (e.g., CP-violation)
- Without further evidence, H_0 is presumed true.
- "Deciding" on H_1 means scientific discovery: new physics.
- Model Selection: No presumed model. (normal/inverted hierarchy)

Appropriate Statistical Approach Depends on

- Is H₀ the presumed model? or more than 2 possible models?
- Is H₀ a special case of H₁, "nested models"
- Parameters: (i) Unknown values under H₀?

(ii) No "true value" under H_0 ?, (iii) Boundary concerns.

Bayesian vs. Frequentist methods

Advice and Resources

Statistical Criterion for Discovery

The most common criterion is the p-value,

$$\mathsf{p} ext{-value} = \mathsf{Pr}\left(\mathsf{T}(\mathsf{y}) \geq \mathsf{T}(\mathsf{y}_{\mathrm{obs}}) \mid \mathsf{H}_{\mathsf{0}}
ight)$$

• $T(\cdot)$ is a *Test Statistic*, e.g., $\Delta \chi^2$ or likelihood ratio statistic

Computing p-values

The most common criterion is the p-value,

$$\mathsf{p}\text{-value} = \mathsf{Pr}\left(T(y) \geq T(y_{\mathrm{obs}}) \mid H_0\right)$$

Requires distribution of T(y) under H_0

- Distributions depend on unknown parameters (e.g., δ_{CP} , θ_{23})
- Standard Theory:
 - estimates of unknown parameters converge to true values
 - models nested, parameter values under H_0 , "large" data.

... often violated in physics

• Monte Carlo toys infeasible with 5σ criterion.

Misuse of P-values

The most common criterion is the p-value,

p-value =
$$\mathsf{Pr}\left(\mathcal{T}(m{y}) \geq \mathcal{T}(m{y}_{\mathrm{obs}}) \mid m{H}_0
ight)$$
 with $\mathcal{T}=\mathsf{test}$ statistic

But....

Mass Hierarchy & CP-violation Bump Hunting

Advice and Resources

Misuse of P-values

The most common criterion is the p-value,

p-value =
$$\mathsf{Pr}\left(\mathcal{T}(m{y}) \geq \mathcal{T}(m{y}_{\mathrm{obs}}) \mid m{\mathcal{H}}_0
ight)$$
 with $\mathcal{T}=$ test statistic

But....

NATURE | RESEARCH HIGHLIGHTS: SOCIAL SELECTION

Psychology journal bans P values

Test for reliability of results 'too easy to pass', say editors.

Chris Woolston

26 February 2015 | Clarified: 09 March 2015

Mass Hierarchy & CP-violation

Bump Hunting Advice and Resources

Misuse of P-values

The most common criterion is the p-value,

p-value =
$$\mathsf{Pr}\left(\mathcal{T}(\mathcal{y}) \geq \mathcal{T}(\mathcal{y}_{\mathrm{obs}}) \mid \mathcal{H}_0
ight)$$
 with $\mathcal{T}=\mathsf{test}$ statistic

But....

NATURE | RESEARCH HIGHLIGHTS: SOCIAL SELECTION

Psychology journal bans P values

Test for reliability of results 'too easy to pass', say editors.

Chris Woolston

26 February 2015 | Clarified: 09 March 2015

NATURE | NEWS

< 🛛 🔒

Statisticians issue warning over misuse of P values

Policy statement aims to halt missteps in the quest for certainty.

Monya Baker

07 March 2016

(ASA Statement on Statistical Significance and P-values) February 5, 2016

The Problem with P-values

The misuse of P-values:

- Do not measure relative likelihood of hypotheses.
- Large p-values do not validate H₀.
- May depend on bits of H₀ that are of no interest.
- Single filter for publication / judging quality of research.
- Should be viewed as <u>a</u> data summary, not <u>the</u> summary

Reviewers, Editors, and Readers want a simple black-and-white rule: p < 0.05, $or > 5\sigma$.

But, statistics is about quantifying uncertainty, not expressing certainty.

A Bayesian Criterion for Discovery

To determine mass hierarchy, suppose we find

$$\mathsf{p} ext{-value} = \mathsf{Pr}\left(\mathcal{T}(\mathbf{y}) \geq \mathcal{T}(\mathbf{y}_{\mathrm{obs}}) \mid \mathsf{NH}\right) = 0.0001$$

Questions

- Can we conclude NH is unlikely?
- Does Pr(data | NH) small imply Pr(NH | data) is small?

Order of conditioning matters!

Consider Pr(A | B) and Pr(B | A) with

- A: A person is a woman.
- B: A person is pregnant.

Bayesian Methods

Bayes Theorem

$$Pr(NH \mid data) = \frac{Pr(data \mid NH) Pr(NH)}{Pr(data \mid NH) Pr(NH) + Pr(data \mid IH) Pr(IH)}$$

Bayesian methods

- have cleaner mathematical foundations
- more directly answer scientific questions

... but they depend on prior distributions

• Pr(NH) = probability of NH before seeing data.

Prior distributions must also be specified for model parameters.

The Problem with Priors

Bayesian Criteria for Discovery:

Bayes Factor =
$$\frac{p_0(y)}{p_1(y)}$$
 with $p_i(y) = \int p_i(y|\theta)p_i(\theta)d\theta$.
 $Pr(H_0 \mid y) = \frac{p_0(y)\pi_0}{p_0(y)\pi_0 + p_1(y)\pi_1} = \frac{\pi_0}{\pi_0 + \pi_1(Bayes Factor)^{-1}}$

Example: (simplified) Higgs search

Likelihood: $y|\lambda \sim \text{Poisson}(10 + \lambda)$

Test:
$$\lambda = 0$$
 vs $\lambda > 0$

Mass Hierarchy & CP-violation

Bump Hunting Advice and Resources

Choice of Prior Matters!

Bayes Factor

Must think hard about choice of prior and report!

Bayes Factors vs Likelihood Ratios

Likelihood Ratio optimizes parameters, whereas Bayes Factor marginalizes.

$$\mathsf{Likelihood} \ \mathsf{Ratio} = \frac{\mathsf{max}_{\theta_0} \, p_0(y \mid \theta_0)}{\mathsf{max}_{\theta_1} \, p_1(y \mid \theta_1)} \neq \mathsf{Bayes} \ \mathsf{Factor} = \frac{\int p_0(y \mid \theta_0) \, p(\theta_0) \, \mathrm{d}\theta_0}{\int p_1(y \mid \theta_1) \, p(\theta_1) \, \mathrm{d}\theta_1}$$

....unless there are no parameters under either model.

A Bayesian Occam's Razor

• Suppose $p(\theta_i)$ are both essentially flat over range where corresponding likelihoods are non-negligible.

Bayes Factor =
$$\frac{\int p_0(y \mid \theta_0) p(\theta_0) d\theta_0}{\int p_1(y \mid \theta_1) p(\theta_1) d\theta_1} \approx \frac{p(\hat{\theta}_0) \int p_0(y \mid \theta_0) d\theta_0}{p(\hat{\theta}_1) \int p_1(y \mid \theta_1) d\theta_1}$$

- The term $p(\hat{\theta}_0)/p(\hat{\theta}_1)$ is sensitive to dimension and scale.
 - At mode, multivariate normal prior $\propto 1/|\Sigma|^{d/2}$.
- Bayes Factor penalizes larger models. ...and depends strongly on choice of prior.
- The degree we penalize complex models is a subjective choice. ٠
- Don't hide your priors!

Frequentist vs Bayesian: Does it Matter?

Model Testing and Model Selection

- Frequency and Bayesian methods may not agree.
 - Bayes automatically penalizes larger models (Occam's Razor)
 - and adjusts for trial factors / look elsewhere effect.
- Choice of prior distribution is often critical.
- Problem cases: Dimension of model parameters differ.
 - CP-violation: $H_0 : \delta_{CP} \in \{0, \pi\}$ vs. $H_1 : \notin \{0, \pi\}$.
 - Higgs search: location and intensity of bump above bkgd.
- Anti-conservative: p-value $\ll \Pr(H_0 \mid y)$.
- Remember:

p-value and $Pr(H_0 | y)$ quantify different things!

Interpreting p-value as $Pr(H_0 | y)$ may significantly overstate evidence for new physics.

Bump Hunting Advice and Resources

Trial Factors, Local, and Global p-values.

Reporting the minimum (local) p-value is cheating.

Motivating Problems

Statistical Criteria for Discovery

Mass Hierarchy & CP-violation Bump Hunting

Bump Hunting Advice and Resources

Example: Searching for a Bump above Background.

Solution: Report both.

5σ Discovery Threshold

5σ is required for "discovery"

- High profile false discoveries led to conservative threshold
- Treat Higgs mass as known (multiple-testing)
- What would you have done had you had different data"
- Calibration, systematic errors, and model misspecification
- But cranking up required σ doesn't address these issues

"In particle physics, this criterion has become a convention ... but should not be interpreted literally ¹."

At PhyStat-nu....

Cousins: Two 3.5 σ results are better than one 5 σ result. **van Dyk:** Calibrated 3.5σ result better than uncalibrated 5σ .

¹Glossary in the Science review of the 2012 CMS and ATLAS discoveries.

Outline

Motivating Problems

- 2 Statistical Criteria for Discovery
- Mass Hierarchy & CP-violation
- Bump Hunting
- 6 Advice and Resources

i.

i.

Normal Hierarchy versus Inverted Hierarchy

Non-nested parameterized models

 H_0 : normal hierarchy H_1 : inverted hierarchy

e.,
$$\Delta m^2_{32} \leq 0$$

e., $\Delta m^2_{32} > 0$

Computing a p-value using LRT

- Non-nested models: If no unknown parameters in either model.
 LRT follows a Gaussian distribution under H₀ or H₁.
- With unknown parameters (e.g., Δm²₃₂, δ_{CP}, θ₂₃):
 Std theory (Wilks, Chernoff) does not apply: dist n of LRT unknown.

 - Some results, but strong assumptions (Blennow, et al. arXiv:1311.1822) Apply with reactor neutrino experiments, not accelerator experiments which involve δ_{CP} (E. Ciuffoli).
 - What about uncertainty in $|\Delta m_{32}^2|$?

Are we back to Monte Carlo (toys)? at 5σ ??

Is There an Easier Solution?

Two paradigms for statistical inference:

Likelihood: inference based on $p(y | \theta)$ and LRT, p-value, etc. Bayesian: inference based on $p(\theta | y) \propto p(y | \theta)p(\theta)$.

Model Fitting

- Specify one model, fit parameters, estimate uncertainty.
- Frequency and Bayesian methods tend to agree.
- Choice of prior distribution is often not critical.

Some "model selection" can be accomplished via model fitting, e.g., confidence intervals.

Normal versus Inverted Hierarchy: Easier Way?

Non-nested parameterized models

 $\begin{array}{ll} H_0 : \text{normal hierarchy} & \text{i.e., } \Delta m_{32}^2 \leq 0 \\ H_1 : \text{inverted hierarchy} & \text{i.e., } \Delta m_{32}^2 > 0 \end{array}$

Is there an easier solution??

Why not just compute $Pr(H_0 \mid y) = Pr(\Delta m_{32}^2 \le 0 \mid y)$?

In this case Bayes Criterion is particularly easy:

$$\mathsf{Posterior}\;\mathsf{Odds} = \frac{\mathsf{Pr}(\Delta m^2_{32} \le 0 \mid y)}{\mathsf{Pr}(\Delta m^2_{32} > 0 \mid y)}$$

...model fitting with Δm_{32}^2 a free parameter.

One model and one prior, easy to compute, not sensitive to prior... what's not to like? Bayesian solution is easier in this case.

CP-violation

Test: $H_0 : \delta_{CP} \in \{0, \pi\}$ versus $H_1 : \delta_{CP} \notin \{0, \pi\}$

p-value

Standard theory (Wilks, Chernoff) applies...

but insufficient data for asymptotics.

- Monte Carlo (toys) required to assess p-value.
- More data required! (For 5σ ??)

Posterior Odds or Bayes Factor

Sensitive to prior on δ, but finite support.

Again, Bayesian solution is easier (with limited data).

Still Easier:

- Report a confidence interval for δ_{CP} .
- Employ model fitting rather than model selection.

Mass Hierarchy & CP-violation

Bump Hunting Advice and Resources

Assessing CP-violation via Model Fitting

Is data consistent with $\delta_{CP} \in \{0, \pi\}$??

Outline

- Motivating Problems
- 2 Statistical Criteria for Discovery
- 3 Mass Hierarchy & CP-violation
- 4 Bump Hunting
- 6 Advice and Resources

Mass Hierarchy & CP-violation

Bump Hunting Advice and Resources

Higgs Search: Statistical Framework

A Mixture Model:

$$f(y_i|\theta) = (1 - \lambda)f_0(y_i|\alpha) + \lambda f_1(y_i|\mu)$$

= background + Higgs

Compare

 H_0 : $\lambda = 0$ (no discovery) H_1 : $\lambda > 0$ (discovery) (And $\lambda < 1$, there will always be background!)

Types of Parameters:

- \bigcirc α : (nuisance) parameter for H_0
- 2 λ : parameter determining hypothesis
- (3) μ : bump location, has not value under H_0 .

Motivating Problems Statistical Criteria for Discovery Mass Hierarchy & CP-violation Bump Hunting Advice and Resources

Trial Factors, Local, and Global p-values.

- For fixed μ: Chernoff's Theorem applies, asymptotic null distribution known, and we can compute local p-values.
- But, reporting the minimum (local) p-value is cheating!!
- Global p-values correct for multiple looks.

Bounding the Global P-value

Consider the stochastic process $\{T_{\mu}(y), \mu \in M\}$ indexed by μ .

- Statistic: $T^+(y) = \max_{\mu \in M_R} T_{\mu}(y)$, maximize over grid of size *R*.
- Global P-value:

$$p_G = \mathsf{Pr}\left(\max_{\mu \in M_R} \mathcal{T}_\mu(y) \geq \max_{\mu \in M_R} \mathcal{T}_\mu(y_{\mathrm{obs}}) \mid \mathcal{H}_0
ight)$$

Bounds on global p-value

Background on Bounds

Bonferroni Bound

Suppose we conduct two tests, with $Pr(T_i \ge c) = \epsilon$,

$$\begin{aligned} \Pr(T_1 \ge c \text{ or } T_2 \ge c) &= \Pr(T_1 \ge c) + \Pr(T_2 \ge c) - \Pr(T_1 \ge c \text{ and } T_2 \ge c) \\ &\leq \Pr(T_1 \ge c) + \Pr(T_2 \ge c) = 2\epsilon. \end{aligned}$$

Thus, bound on global p-value is twice local p-value.

Markov Bound

Let X be a random variable that can take on values $0, 1, 2, \ldots$

$$E(X) = \sum_{x=0}^{\infty} x \operatorname{Pr}(X = x) \ge \sum_{x=1}^{\infty} x \operatorname{Pr}(X = x)$$
$$\ge \sum_{x=1}^{\infty} \operatorname{Pr}(X = x) = \operatorname{Pr}(X \ge 1).$$

Evaluating the Bounds

Questions:

- Which bound is sharper?
- Which bound is easier to compute?

The method of Gross and Vitells (2010)

• To avoid MC evaluation of $E(N_c|H_0)$

$$E(N_c \mid H_0) = E(N_{c_0} \mid H_0) \ \left(\frac{c}{c_0}\right)^{(s-1)/2} \exp\left(-\frac{(c-c_0)}{2}\right), \ c_0 \ll c$$

• $6\sigma / 5\sigma$ significances reduce to $5.1\sigma / 4.6\sigma$ (ATLAS/CMS)

Mass Hierarchy & CP-violation Bump Hunting

Advice and Resources

Higgs Search: Is a Bayes Factor Possible?

Types of Parameters:

- (1) α : parameter for H_0
- **2** λ : determines hypothesis
- (3) μ : no value under H_0 .

Basic Model:

$$p(y_i|\theta) = (1-\lambda)f_0(y_i|\alpha) + \lambda f_1(y_i|\mu)$$

= background + Higgs

P-values are "biased toward discovery." How about $Pr(H_0 \mid y)$?

Strategies for Setting Prior Distributions

- Easiest case: Bkgd parameters common to both models.
- Diffuse prior: flat over region where $p_i(y|\alpha)$ non-negligible.
- Fixing λ and μ ,

 $\mathsf{BF} = \frac{\int \prod_{i} f_{0}(y_{i}|\alpha) p(\alpha) d\alpha}{\int \prod_{i} [(1-\lambda)f_{0}(y_{i}|\alpha) + \lambda f_{1}(y_{i}|\mu)] p(\alpha) d\alpha} = \frac{p(\hat{\alpha}_{0}) \int p_{0}(y|\alpha) d\alpha}{p(\hat{\alpha}_{1}) \int p_{1}(y|\alpha) d\alpha}$

• The choice of prior on α is not critical.

Hypothesis Indexing Parameter: λ

Lower Bound on Bayesian evidence for H_0

- P-values tend to favor H_1 more strongly than $Pr(H_0 \mid y)$. [At least when H_0 is "precise".]
- Using a parameterized prior $\lambda \sim p(\lambda \mid \beta)$,

$$\bar{p}_{1}(y \mid \mu) = \sup_{\beta} \int p_{1}(y \mid \lambda, \mu) p(\lambda \mid \beta) d\lambda$$
$$\Pr(H_{0} \mid y, \mu) = \frac{\pi_{0} p_{0}(y)}{\pi_{0} p_{0}(y) + \pi_{1} p_{1}(y \mid \mu)} \ge \frac{\pi_{0} p_{0}(y)}{\pi_{0} p_{0}(y) + \pi_{1} \bar{p}_{1}(y \mid \mu)}$$

Example

$$y_i \stackrel{\text{indep}}{\sim} \mathsf{POISSON}\Big(f_0(\alpha, i) + \lambda f_1(\mu, i)\Big)$$

Test: $H_0: \lambda = 0$ vs $H_0: \lambda > 0$

- $\lambda \sim \text{GAMMA}(\alpha, \beta)$
- Prior should peak at zero: we set $\alpha = 1$.

Parameters Not Identifiable Under H_0 : μ

Local $p(H_0|y)$: inf_{μ} $p(H_0|y,\mu)$ Global $p(H_0|y)$: properly average over $p(\mu)$

Like global p-value, averaging over $p(\mu)$ penalizes wide search

$$p_{1}(y) = \int p_{1}(y \mid \mu) p(\mu) d\mu \leq \sup_{\mu} p_{1}(y \mid \mu)$$

$$Pr(H_{0} \mid y) = \frac{\pi_{0} p_{0}(y)}{\pi_{0} p_{0}(y) + \pi_{1} p_{1}(y)} \geq \frac{\pi_{0} p_{0}(y)}{\pi_{0} p_{0}(y) + \pi_{1} \sup_{\mu} p_{1}(y \mid \mu)}$$

= $\inf_{\mu} p(H_0 | y, \mu)$ = Local probability of H_0

• Simplest choice of $p(\mu)$ is uniform over the search region.

Look-elsewhere correction similar to frequency methods.

Motivating Problems Statistical Criteria for Discovery

Mass Hierarchy & CP-violation Bump Hunting Advice :

Example: Are P-values Biased in Favor H_1 ?

Model:

$$y_i \stackrel{\text{indep}}{\sim} \mathsf{POISSON}\Big(f_0(\alpha, i) + \lambda f_1(\mu, i)\Big)$$

Test: $H_0: \lambda = 0 \text{ vs } H_0: \lambda > 0$

• $f_0 = power law$

•
$$f_1 = \mathcal{I}\{i = \mu\}$$

100 bins

Example: Local vs Global P-values

- Varying the count in the line bin (3.5 GeV).
- The expected count in this bin under H_0 : 330.

Example: Comparing $Pr(H_0 | y)$ with p-value

Consider physicists who repeatedly conducts hypothesis tests

- Half the time H_0 is true; when H_1 is true, $\mu = 3.5 GeV$.
- Dashed green line: relative frequency of *H*₀.

We compute lower bound on $Pr(H_0 | y)$ [Recall prior on λ .]

Natural Bayesian correction for multiple testing

Prior on μ naturally and simply corrects for the "look elsewhere effect"

For Bayesians the challenges are different... setting the prior.

Motivating Problems	Statistical Criteria for Discovery	Mass Hierarchy & CP-violation	Bump Hunting	Advice and Resources
000	00000000000000000000000	000000	00000000000000	00000

Outline

1 Motivating Problems

- 2 Statistical Criteria for Discovery
- 3 Mass Hierarchy & CP-violation

4 Bump Hunting

Frequentist or Bayesian?

Do you have to choose??

- Bayes prescribes methodology.
- Frequentists evaluate methods.
- Frequency evaluation of Bayesian methods.
- Model fitting: often little difference in fits and errors.
- Why not control rate of false detection

and assess probability of new physics?

• Why throw away half of your tool box?

Neutrino physicists open to both Bayesian / Frequency methods

- Lots of Bayesian and Frequentist proposals at PhyStat-ν.
- My experience with cosmologists and particle physicists.

Strategies

What is a physicists to do?

- Controlling false discovery is critical in physical sciences.
- Comparing p-values with a predetermined significant level can control false discovery.... *if used with care, e.g., no cherry picking!*
- When confronted with small p-values researchers *...even statisticians!!...* may believe *H*₀ is unlikely.
- Bayesian solutions can better quantify likelihood of H₀ / H₁.
- Solution: Compute both *global* p-value and Bayes Factor.

But be Careful...

- quantification of p-values in non-standard problems
- 2 choice and validation of prior distributions

remain challenging!

Resources

PhyStat- ν Tokyo

- http://indico.ipmu.jp/indico/conferenceDisplay.py?confId=82
- Summary Document in preperation

PhyStat-*v* Fermilab

- Continuation of meeting in Japan.
- https://indico.fnal.gov/conferenceDisplay.py?confId=11906

PhyStat Repository

- Links to ten PhyStat meetings, with slides, papers, and proceedings.
- Some software packages and tools
- http://www.phystat.org

References

van Dyk, D. A. (2014). The Role of Statistics in the Discovery of a Higgs Boson. Annual Review of Statistics and Its Application, 1, 41–59.

Stein, N. M., van Dyk, D. A., Kashyap, V. L., and Siemiginowska, A. (2015). Detecting Unspecified Structure in Low-Count Images. *The Astrophysical Journal*, **813**, 66 (15pp).

Algeri, S., Conrad, J., and van Dyk, D. A. (2016). Comparing Non-Nested Models in the Search for New Physics. *Monthly Notices of the Royal Astronomical Society: Letters*, **458** (1), L84-L88.

Algeri, S., van Dyk, D. A., Conrad, J., and Anderson, B. (2016). Methods for Correcting the Look-Elsewhere Effect in Searches for New Physics. *Journal of Instrumentation*, **11**, P12010.

Algeri, S. and van Dyk, D. A., and Conrad, J. (2017+). Testing one Hypothesis Multiple Times. Submitted.

Workshop Participants (2017+). PhyStat- ν 2016 at the IPMU: A Summary. In preparation.