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Scientific and Statistical Themes
@ High-stakes science: discovery vs. estimation.

@ Model selection is much harder than estimation.
@ Frequentist and Bayesian methods: different conclusions.
@ s a non-partisan approach possible?
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Motivating Problem: Neutrino Oscillation

Neutrino Oscillation

@ Neutrino created as electron, muon or tau may later be
measured with different flavor.

@ Flavor probability varies periodically as neutrino travels
through space and depends on several parameters.

Mass Hierarchy ....ordering of the mass eigenstates
@ normal (Am2, >0) vs inverted hierarchy (Am2, < 0)
° \Am%zy well constrained, degeneracy of sign with 6o5 or dcp.

CP-violation
@ Is there evidence to counter écp € {0, 7}?
@ Current data is limited.
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Higgs Search
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Searching for a Bump above Background

@ Expect excess counts at invariant mass of Higgs boson.

@ Statistically: no bump
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@ The Location of possible bump unknown.
@ What is the bump location if there is no bump?
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Statistical Framework for Discovery

Model / Hypothesis Testing

Hp: The null hypothesis (e.g., no CP-violoation, 5cp = 0)

H;: The alternative hypothesis (e.g., CP-violation)
@ Without further evidence, Hy is presumed true.

@ “Deciding” on H; means scientific discovery: new physics.
@ Model Selection: No presumed model. (normaliinverted hierarchy)

Appropriate Statistical Approach Depends on

@ Is Hy the presumed model?  or more than 2 possible models?

@ Is Hy a special case of Hy, “nested models”
@ Parameters: (i) Unknown values under Hy?
(i) No “true value” under Hy?, (iii) Boundary concerns.

@ Bayesian vs. Frequentist methods
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Statistical Criterion for Discovery

The most common criterion is the p-value,

pvalue = Pr (T(y) = T(yens) | Ho)
@ T(-)is a Test Statistic, e.g., Ax? or likelihood ratio statistic

Likelihood under Ho
maxg Po(y | 6)

maxg p1(y | 6)
Likelihood under H,

Likelihood Ratio Test = —21log

T(Yobs) %
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Computing p-values

The most common criterion is the p-value,

p-value = Pr <T(y) > T(Yobs) | Ho)

T(Yobs) T)

Requires distribution of T(y) under Hy
@ Distributions depend on unknown parameters  (e.g., écp, 623)
@ Standard Theory:
e estimates of unknown parameters converge to true values
e models nested, parameter values under Hp, “large” data.
... often violated in physics
@ Monte Carlo toys infeasible with 5¢ criterion.
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Misuse of P-values

The most common criterion is the p-value,
p-value = Pr (T(y) > T(Yovs) | Ho) with T = test statistic

But....
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Misuse of P-values

The most common criterion is the p-value,

p-value = Pr (T(y) > T(Yovs) | Ho) with T = test statistic
But....

Home | News & Comment | Research | Careers & Jobs | Current lssue | Archive

Volume 519 ' Issue 7541 » Research Highiights: Social Selection ’

Psychology journal bans P values
Test for reliability of results ‘too easy to pass’, say editors.

Chris Woolston

26 February 2015 | Clarified: 09 March 2015
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Misuse of P-values

The most common criterion is the p-value,

p-value = Pr (T(y) > T(Yovs) | Ho) with T = test statistic

But....

Home | News & Comment | Research | Careers & Jobs | Current lssue | Archive Home | News & Comment | Research | Careers & Jobs | CurentIssue | Archive | Audio & Video | Fo

Volume 519 > Issue 7541 > Ressarch Highiights: Social Selection > / Volume 531 Issue 7593 » News m
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Psychology journal bans P values Statisticians issue warning over misuse of P values

Test for reliability of results ‘too easy to pass’, say editors. Policy statement aims to halt missteps in the quest for certainty.

Chris Woolston Monya Baker

26 February 2015 | Clarified: 09 March 2015 07 March 2016

(ASA Statement on Statistical Significance and P-values)
February 5, 2016
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The Problem with P-values

The misuse of P-values:
@ Do not measure relative likelihood of hypotheses.
@ Large p-values do not validate Hj.
@ May depend on bits of Hy that are of no interest.
@ Single filter for publication / judging quality of research.
@ Should be viewed as a data summary, not the summary |

Reviewers, Editors, and Readers want a simple
black-and-white rule: p < 0.05, or > 5¢.

But, statistics is about quantifying uncertainty,
not expressing certainty.
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A Bayesian Criterion for Discovery

To determine mass hierarchy, suppose we find
p-value = Pr (T(y) > T(Yobs) | NH) — 0.0001
Questions

@ Can we conclude NH is unlikely?
@ Does Pr(data | NH) small imply Pr(NH | data) is small?

Order of conditioning matters!

Consider Pr(A | B) and Pr(B | A) with
A: A person is a woman.
B: A person is pregnant.
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Bayesian Methods

Bayes Theorem

Pr(data | NH) Pr(NH)
Pr(data | NH) Pr(NH) + Pr(data | IH) Pr(IH)

Pr(NH | data) =

Bayesian methods
@ have cleaner mathematical foundations
@ more directly answer scientific questions

... but they depend on prior distributions
@ Pr(NH) = probability of NH before seeing data.

Prior distributions must also be specified for model parameters.
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The Problem with Priors

Bayesian Criteria for Discovery:

Bayes Factor = 505}/ with pi(y / pi(y10)pi(6
1

PI’(HO | y) _ ,DO(}/)”r _

Po(Y)mo + p1(y)m ~ mo +m (Bayes Factor)—1

Example: (simplified) Higgs search
Likelihood: y|\ ~ Poisson(10+ ) Test: A=0vs A >0

marginal likelihood

prior distribution

p(A)
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Value of p;(y) depends on prior!
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Choice of Prior Matters!

Bayes Factor

Ho : y ~ Poisson(10). e
Hi : y ~ Poisson(10 4+ \). 21
with A ~ exp(€) ig‘
@ Observe y = 15 31 Favors Hy
o Iog(BayeS FaCTOI‘) & = Iog(?) ' ’

V

Must think hard about choice of prior and report!
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Bayes Factors vs Likelihood Ratios

Likelihood Ratio optimizes parameters, whereas Bayes Factor marginalizes.

0, (% 0p) do,

Likelihood Ratio = %(HO) = Bayes Factor = J Po(y | 90) p(%) d0o
maxo, p1(y | 01) S pi(y | 61) p(61) do;
....unless there are no parameters under either model.

A Bayesian Occam’s Razor

@ Suppose p(6;) are both essentially flat over range where corresponding
likelihoods are non-negligible.

J po(y | 60) p(0) do _ p(fo) [ Po(y | fo) Ao

Bayes Factor = N ——
g TPy 161) p8) &0~ p(@y) [ pr(y | 61) dbs

@ The term p(f)/p(f:) is sensitive to dimension and scale.

@ At mode, multivariate normal prior oc 1/|%|9/2.
(] Bayes Factor penalizes Iarger models. ...and depends strongly on choice of prior.
@ The degree we penalize complex models is a subjective choice.

@ Don't hide your priors!
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Frequentist vs Bayesian: Does it Matter?

Model Testing and Model Selection

@ Frequency and Bayesian methods may not agree.
e Bayes automatically penalizes larger models (Occam’s Razor)
e and adjusts for trial factors / look elsewhere effect.
@ Choice of prior distribution is often critical.
@ Problem cases: Dimension of model parameters differ.
e CP-violation: Hp : ocp € {0, 7} vs. H; :¢ {0, x}.
e Higgs search: location and intensity of bump above bkgd.
@ Anti-conservative: p-value < Pr(Hp | y).

@ Remember:
p-value and Pr(Hy | y) quantify different things!

Interpreting p-value as Pr(Hy | y) may
significantly overstate evidence for new physics.



Statistical Criteria for Discovery
000000000000 0e00

Trial Factors, Local, and Global p-values.
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ATLAS preliminary 2011 + 2012 data
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Reporting the minimum (local) p-value
is cheating.
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Example: Searching for a Bump above Background.
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count
.... but researchers interpret p-value as Pr(Hy | y).

Solution: Report both.
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5o Discovery Threshold

50 is required for “discovery”
@ High profile false discoveries led to conservative threshold
@ Treat Higgs mass as known (multiple-testing)
@ “What would you have done had you had different data”
@ Calibration, systematic errors, and model misspecification
@ But cranking up required o doesn’t address these issues

“In particle physics, this criterion has become a convention ...
but should not be interpreted literally *.”

At PhyStat-nu....
Cousins: Two 3.5¢ results are better than one 50 result.
van Dyk: Calibrated 3.50 result better than uncalibrated 5¢.

1 Glossary in the Science review of the 2012 CMS and ATLAS discoveries.
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Normal Hierarchy versus Inverted Hierarchy

Non-nested parameterized models

Ho : normal hierarchy  i.e., Am3, <0
Hi : inverted hierarchy i.e., AmZ, >0

Computing a p-value using LRT

@ Non-nested models: If no unknown parameters in either model.
@ LRT follows a Gaussian distribution under Hy or H;.

@ With unknown parameters (e.g., Am2,, dcp, 023):
@ Std theory ?Wilks, Chernofg) dgoes no?%pp?)]/): dizs%’)n of LRT unknown.

@ Some results, but strong assumptions (Blennow, et al. arXiv:1311.1822)
Apply with reactor neutrino experiments, not accelerator experiments which involve écp (E. Ciuffoli).

e What about uncertainty in |Am3,|?

Are we back to Monte Carlo (toys)? at 50?7
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Is There an Easier Solution?

Two paradigms for statistical inference:
Likelihood: inference based on p(y | 0). ... and LRT, p-value, etc.
Bayesian: inference based on p(6 | y) « p(y | 8)p(6).

Model Fitting

@ Specify one model, fit parameters, estimate uncertainty.
@ Frequency and Bayesian methods tend to agree.
@ Choice of prior distribution is often not critical.

Some “model selection” can be accomplished
via model fitting, e.g., confidence intervals.
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Normal versus Inverted Hierarchy: Easier Way?

Non-nested parameterized models

Ho : normal hierarchy  i.e., Am3, <0
H; : inverted hierarchy i.e., Am3, >0

Is there an easier solution??
Why not just compute Pr(Hp | y) = Pr(Am3, < 0| ¥)?
In this case Bayes Criterion is particularly easy:
Pr(Am3, <0 |y)
Pr(Am3, > 0| y)

...model fitting with Am3,, a free parameter.

Posterior Odds =

One model and one prior, easy to compute,
not sensitive to prior... what's not to like?

Bayesian solution is easier in this case.
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CP-violation

Test: Hy : ocp € {0, 7} versus Hy : ocp ¢ {0, 7}
p-value

@ Standard theory (Wilks, Chernoff) applies...
but insufficient data for asymptotics.

@ Monte Carlo (toys) required to assess p-value.
@ More data required! (For 5577)

Posterior Odds or Bayes Factor

@ Sensitive to prior on §, but finite support.
Again, Bayesian solution is easier (with limited data).

Still Easier:
@ Report a confidence interval for dcp.
@ Employ model fitting rather than model selection.
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Assessing CP-violation via Model Fitting
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Is data consistent with ocp € {0, 7} ?7?
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Higgs Search: Statistical Framework

A Mixture Model:

fyil) = (1= N(yila) + Af(yilp)
background -+ Higgs

Compare
Ho : A=0 (nodiscovery)
Hi : XA>0 (discovery)

(And X\ < 1, there will always be background!)
v

Types of Parameters:

@ o (nuisance) parameter for Hy
@ )\: parameter determining hypothesis
© .- bump location, has not value under Hy.
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Trial Factors, Local, and Global p-values.
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@ For fixed u: Chernoff’'s Theorem applies, asymptotic null
distribution known, and we can compute local p-values.

@ But, reporting the minimum (local) p-value is cheating!!
@ Global p-values correct for multiple looks.
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Bounding the Global P-value

Consider the stochastic process {T,,(y), x € M} indexed by .
@ Statistic: TT(y) = max,emg 1,(Y), maximize over grid of size A.
@ Global P-value:

pe = Pr (E‘m Tu(y) = max T, (Yo | HO)

Bounds on global p-value

@ Bonferroni: pg < Rp;.

Upcrossings

@ Markov (Davies, 1987):
pe = Pr (max T.(y) > c| Ho)
I
< pu+Pr(Ne > 1| Ho) T
< pL+E(N: | Ho). T T

Search Region

N¢ = number of upcrossings.
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Background on Bounds

Bonferroni Bound
Suppose we conduct two tests, with Pr(T; > ¢) =,

Pr(Ty > corT, >c) Pr(Ty > ¢)+Pr(T, >¢c)—Pr(Ty > cand T, > c)

< Pr(Ty >¢)+Pr(Ta > c) =2

Thus, bound on global p-value is twice local p-value.

.

Markov Bound
Let X be a random variable that can take on values 0, 1,2, .. ..

E(X) = f:xPr(X: x) > ixPr(X: X)
x=0 x=1

v

iPr(X =x)=Pr(X>1).
x=1

.
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Evaluating the Bounds

Questions:
@ Which bound is sharper?
© Which bound is easier to compute?

The method of Gross and Vitells (2010)

@ To avoid MC evaluation of E(N.|Ho)

(s—1)/2
c c—
E(Nc | Ho) = E(Ng, | Ho) (Co) exp (—( 200)) , oK

@ 60 / 50 significances reduce to 5.10 /4.60 (ATLAS/CMS)
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Higgs Search: Is a Bayes Factor Possible?

Types of Parameters:
@ o: parameter for Hy
@ : determines hypothesis
© 1 no value under Hj.

Basic Model:
p(yil0) = (1= XNfh(yila) + M (yilw)
= background + Higgs

P-values are “biased toward discovery.” How about Pr(H; | y)?

Strategies for Setting Prior Distributions
@ Easiest case: Bkgd parameters common to both models.

@ Diffuse prior: flat over region where p;(y|«) non-negligible.

@ Fixing A and p,

J 1, fo(yile)p(a) da p(éo) J po(yla)da

BF

@ The choice of prior on « is not critical. )

= TILIA = Vo(ile) + M (vilm)p(@)da — p(ar) [ pi(yla)da
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Hypothesis Indexing Parameter: A

Lower Bound on Bayesian evidence for Hy

@ P-values tend to favor Hy more strongly than Pr(Hp | y).
[At least when Hj is ‘precise”.]

@ Using a parameterized prior A ~ p(\ | 3),

Pi(y u) = sup / pi(y | A m)p(A | B)dA
B8

moPo(Y) < moPo(Y)
moPo(Y) +mp1(Y | 1) — moPo(y) +mibi(y | 1))

@ )\ ~ GAMMA(a, )

@ Prior should peak at zero:
we seta = 1.

Pr(HO | Y, /'L)

I POISSON(fO(a, i) + My (1, i))
Test: Hp: A=0vs Hy: A >0

€
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Parameters Not Identifiable Under Hy: i

Local p(Holy): inf. p(Ho | ¥, 1)
Global p(Hyply): properly average over p(u)

Like global p-value, averaging over p(u) penalizes wide search

) = [ Pty |l < suppi(y | 1)

_ 7T0p0(}/) 7T0p0(}/)
Pr(Ho | y) ToPo(y) + 11 () 2 ToPo(y) + misup, p1(y | 1)

= infp(Ho | ¥, ) = Local probability of Hy
i
@ Simplest choice of p(x) is uniform over the search region.
o Look-elsewhere correction similar to frequency methods.
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Example: Are P-values Biased in Favor H;?

Mqﬁlel: @ fy = power law
y; "~? POISSON (fo(a, i)+ My (1, i)) o fi =T{i=p}
Test: Hp: A=0vs Hp: A >0 @ 100 bins
8
8 L]
° n 3
= § 1 ¢ Is there a line
T | o at 3.5 GeV?
T8l
& “,
o \‘

2 4 6 8 10
energy
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Example: Local vs Global P-values
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@ Varying the count in the line bin (3.5 GeV).
@ The expected count in this bin under Hp: 330.

p-value
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Example: Comparing Pr(Hp | y) with p-value

Consider physicists who repeatedly conducts hypothesis tests
@ Half the time Hy is true; when H; is true, u = 3.5GeV.
@ Dashed green line: relative frequency of Hp.

We compute lower bound on Pr(Hp | y).... recaiiprioron x.J

e
—
— — P(HolY. 1)
S © —
- Rel. prop.Hg
I ©
T o
PR
> o
g o
& o]
o | —
S M T T T T T
250 300 350 400 450 500

count )
.... but researchers interpret p-value as Pr(Hy | y).
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Natural Bayesian correction for multiple testing

o
S

—~ o —_— PEH0|Y,H)
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Prior on . naturally and simply corrects for
the “look elsewhere effect”

For Bayesians the challenges are different... setting the prior.
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Frequentist or Bayesian?

Do you have to choose??
@ Bayes prescribes methodology.
@ Frequentists evaluate methods.
@ Frequency evaluation of Bayesian methods.
@ Model fitting: often little difference in fits and errors.

@ Why not control rate of false detection
and assess probability of new physics?

@ Why throw away half of your tool box?

Neutrino physicists open to both Bayesian / Frequency methods

@ Lots of Bayesian and Frequentist proposals at PhyStat-v.
@ My experience with cosmologists and particle physicists.
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Strategies

What is a physicists to do?

@ Controlling false discovery is critical in physical sciences.

@ Comparing p-values with a predetermined significant level
can control false diSCOVGFy.... if used with care, e.g., no cherry picking!

@ When confronted with small p-values researchers
...even statisticians!!... may believe Hy is unlikely.

@ Bayesian solutions can better quantify likelihood of Hy / H;.
@ Solution: Compute both global p-value and Bayes Factor. )

But be Careful...
@ quantification of p-values in non-standard problems
© choice and validation of prior distributions
remain challenging!
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Resources

PhyStat- Tokyo
@ http://indico.ipmu.jp/indico/conferenceDisplay.py?confId=82
@ Summary Document in preperation

PhyStat-~ Fermilab Ph
@ Continuation of meeting in Japan. Fermilab 2016

@ https://indico.fnal.gov/conferenceDisplay.py?confId=11906

PhyStat Repository

@ Links to ten PhyStat meetings, with slides, papers, and
proceedings.

@ Some software packages and tools
@ http://www.phystat.org
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