

Perspective on cLFV with high-intensity muon beams at PSI and FNAL

Francesco Renga INFN Roma

The most intense DC muon beam in the world

 The ring cyclotron at PSI (Villigen, CH) serves the most intense DC muon beam lines in the world

FNAL and J-PARC beams for μ -e conversion

Dedicated target stations • Target + capture solenoids for µ-e conversion experiments (mu2e & COMET) Proton CS Cold Mass (CSO-MS2) TS1 Cold Mass (TS1a-TS1f) BEAM 1200 2240 ~8 kW at the target 5060 1866 6426

Hybrid W-Shield:22ton

Cu-Shield:9t

The HiMB Project @ PSI

- PSI is designing a high intensity muon beam line (HiMB) with a goal of $\sim 10^{10} \,\mu/\text{sec}$ (x200 the MEG-II beam, x25 the highest PSI intensity)
- Optimization of the beam optics:
 - improved muon capture efficiency at the production target
 - improved transport efficiency to the experimental area

x4 µ capture eff. x6 µ transport eff.

1.3 x 10¹⁰ μ/s

in the experimental area with 1400 kW beam power

The HiMB Project @ PSI

- PSI is designing a high intensity muon beam line (HiMB) with a goal of $\sim 10^{10} \,\mu/\text{sec}$ (x200 the MEG-II beam, x25 the highest PSI intensity)
- Optimization of the beam optics:
 - improved muon capture efficiency at the production target
 - improved transport efficiency to the experimental area

Part of a larger project including also tumor therapy with alpha's (TATTOOS)

Muons @ FNAL with PIP-II

- The PIP-II complex will serve the Long Baseline Neutrino Factory (LBNF), but it will take only 1% of the power
- ~1.6 MW of beam power available for other physics projects
 - what about muons?

HiMB Physics Case

Science Case for the new High-Intensity Muon Beams HIMB at PSI

Edited by A. Knecht, F. Meier Aeschbacher, T. Prokscha, S. Ritt, A. Signer

M. Aiba¹, A. Amato¹, A. Antognini^{1,2}, S. Ban³, N. Berger⁴, L. Caminada^{1,5}, R. Chislett⁶, P. Crivelli², A. Crivellin^{1,5}, G. Dal Maso^{1,2}, S. Davidson⁷, M. Hoferichter⁸, R. Iwai², T. Iwamoto³, K. Kirch^{1,2}, A. Knecht¹, U. Langenegger¹, A. M. Lombardi⁹, H. Luetkens¹, F. Meier Aeschbacher¹, T. Mori³, J. Nuber^{1,2}, W. Ootani³, A. Papa^{1,10}, T. Prokscha¹, F. Renga¹¹, S. Ritt¹, M. Sakurai², Z. Salman¹, P. Schmidt-Wellenburg¹, A. Schöning¹², A. Signer^{1,5,*}, A. Soter², L. Stingelin¹, Y. Uchiyama³, and F. Wauters⁴

A report about physics perspectives for high-intensity muon beam lines at PSI

arXiv:2111.05788

Particle physics (cLFV, µEDM, muonium...) and material science (µSR)

Mu3e @ PSI

- μ^+ -> e⁺ e⁺ e⁻ with a detector based on silicon pixels (50 μ m thick HV-MAPS) and scintillators for timing
- Phase-I Mu3e experiment expected to run before the PSI shutdown, foreseen in 2026-2028

- Detector already designed to cope with intensities up to $10^{10} \,\mu/s$
 - Phase-II (with additional detector stations for improved performances) expected to be the first particle-physics experiment at HiMB

Mu3e @ PSI

Snowmass contributions

Mu2e-II: Muon to electron conversion with PIP-II Contributed paper for Snowmass

K. Byrum,¹ S. Corrodi,¹ Y. Oksuzian,¹ P. Winter,¹ L. Xia,¹ A. W. J. Edmonds,² J. P. Miller,² J. Mott,³ W. J. Marciano,⁴ R. Szafron,⁴ R. Bonventre^b,⁵ D. N. Brown^b,⁵ Yu. G. Kolomensky^{ab},⁵ O. Ning^a,⁵ V. Singh^a,⁵ E. Prebys,⁶ L. Borrel,⁷ B. Echenard,⁷ D. G. Hitlin,⁷ C. Hu,⁷ D. X. Lin,⁷ S. Middleton,⁷ F. C. Porter,⁷ L. Zhang,⁷ R.-Y. Zhu,⁷ D. Ambrose,⁸ K. Badgley,⁸ R. H. Bernstein,⁸ S. Boi,⁸ B. C. K. Casey,⁸ R. Culbertson,⁸ A. Gaponenko,⁸ H. D. Glass,⁸ D. Glenzinski,⁸ L. Goodenough,⁸ A. Hocker,⁸ M. Kargiantoulakis,⁸ V. Kashikhin,⁸ B. Kiburg,⁸ R. K. Kutschke,⁸ P. A. Murat,⁸ D. Neuffer,⁸ V. S. Pronskikh,⁸ D. Pushka,⁸ G. Rakness,⁸ T. Strauss,⁸ M. Yucel,⁸ C. Bloise,⁹ E. Diociaiuti,⁹ S. Giovannella,⁹ F. Happacher,⁹ S. Miscetti,⁹ I. Sarra,⁹ M. Martini,¹⁰ A. Ferrari,¹¹ S. E. Müller,¹¹ R. Rachamin,¹¹ E. Barlas-Yucel,¹² A. Artikov,¹³ N. Atanov,¹³ Yu. I. Davydov,¹³ v. Glagolev,¹³ I. I. Vasilyev,¹³ D. N. Brown,¹⁴ Y. Uesaka,¹⁵ S. P. Denisov,¹⁶ V. Evdokimov,¹⁶ A. V. Kozelov,¹⁶ A. V. Popov,¹⁶ I. A. Vasilyev,¹⁶ G. Tassielli,¹⁷ T. Teubner,¹⁸ R. T. Chislett,¹⁹ G. G. Hesketh,¹⁹ M. Lancaster,²⁰ M. Campbell,²¹ K. Ciampa,²² K. Heller,²² B. Messerly,²² M. A. C. Cummings,²³ L. Calibbi,²⁴ G. C. Blazey,²⁵ M. J. Syphers,²⁵ V. Zutshi,²⁵ C. Kampa,²⁶ M. MacKenzie,²⁶ S. Di Falco,²⁷ S. Donati,²⁷ A. Gioiosa,²⁷ V. Giusti,²⁷ L. Morescalchi,²⁷ D. Pasciuto,²⁷ E. Pedreschi,²⁷ F. Spinella,²⁷ M. T. Hedges,²⁸ M. Jones,²⁸ Z. Y. You,²⁹ A. M. Zanetti,³⁰ E. V. Valetov,³¹ E. C. Dukes,³² R. Ehrlich,³² R. C. Group,³² J. Heeck,³² P. Q. Hung,³² S. M. Demers,³³ G. Pezzullo,³³ K. R. Lynch,³⁴ and J. L. Popp³⁴

An upgrade of Mu2e, to cope with higher beam rates

The Mu2e-II project

100 kW on target

A further step in thinning down straw tubes (3-8 µm)

Snowmass contributions

Mu2e-II: Muon to electron conversion with PIP-II Contributed paper for Snowmass

K. Byrum,¹ S. Corrodi,¹ Y. Oksuzian,¹ P. Winter,¹ L. Xia,¹ A. W. J. Edmonds,² J. P. Miller,²

J. Mott,³ W. J. Marciano,⁴ R. Szafron,⁴ R. Bonventre^b,⁵ D. N. Brown^b,⁵ Yu. G. Kolomensky^{ab},⁵

O. Ning^a,⁵ V. Singh^a,⁵ E. Prebys,⁶ L. Borrel,⁷ B. Echenard,⁷ D. G. Hitlin,⁷ C. Hu,⁷ D. X. Lin,⁷

S. Middleton,⁷ F. C. Porter,⁷ L. Zhang,⁷ R.-Y. Zhu,⁷ D. Ambrose,⁸ K. Badgley,⁸ R. H. Bernstein,⁸

S. Boi,⁸ B. C. K. Casey,⁸ R. Culbertson,⁸ A. Gaponenko,⁸

L. Goodenough,⁸ A. Hocker,⁸ M. Kargiantoulakis,⁸ V. Kashikh P. A. Murat,⁸ D. Neuffer,⁸ V. S. Pronskikh,⁸ D. Pushka,⁸ G. I

C. Bloise,⁹ E. Diociaiuti,⁹ S. Giovannella,⁹ F. Happacher,⁹ S.

A. Ferrari,¹¹ S. E. Müller,¹¹ R. Rachamin,¹¹ E. Barlas-Yucel,¹²

Davydov,¹³ v. Glagolev,¹³ I. I. Vasilyev,¹³ D. N. Brown,¹⁴ Y. Uesaka,¹⁵ S. P. Denisov,¹⁶

V. Evdokimov,¹⁶ A. V. Kozelov
R. T. Chislett,¹⁹ G. G. Hesketl
B. Messerly,²² M. A. C. Cu
Zutshi,²⁵ C. Kampa,²⁶ M. Mac
L. Morescalchi,²⁷ D. Pasciuto
Z. Y. You,²⁹ A. M. Zanetti,³⁰
J. Heeck,³² P. Q. Hung,³² S.

A New Charged Lepton Flavor Violation Program at Fermilab

M. Aoki,¹ R. B. Appleby,^{2,3} M. Aslaninejad,⁴ R. Barlow,⁵ R.H. Bernstein,⁶ C. Bloise,⁷ L.
Calibbi,⁸ F. Cervelli,⁹ R. Culbertson,⁶ André Luiz de Gouvêa,¹⁰ S. Di Falco,⁹ E. Diociaiuti,⁷ S. Donati,⁹ R. Donghia,⁷ B. Echenard,¹¹ A. Gaponenko,⁶ S. Giovannella,⁷ C. Group,¹² F.
Happacher,⁷ M. T. Hedges,¹³ D.G. Hitlin,¹¹ E. Hungerford,¹⁴ C. Johnstone,⁶ D. M. Kaplan,¹⁵ M. Kargiantoulakis,⁶ D. J. Kelliher,¹⁶ K. Kirch,¹⁷ A. Knecht,¹⁸ Y. Kuno,^{1,19} A. Kurup,²⁰ J.-B. Lagrange,¹⁶ M. Lancaster,²¹ K. Long,²⁰ A. Luca,⁶ K. Lynch,²² S. Machida,¹⁶ M. Martini,^{23,*} S. Middleton,¹¹ S. Mihara,²⁴ J. Miller,²⁵ S. Miscetti,⁷ L. Morescalchi,⁹ Y. Mori,²⁶ P. Murat,⁶ B. Muratori,^{27,3} D. Neuffer,⁶ A. Papa,⁹ J. Pasternak,²⁰ E. Pedreschi,⁹ G. Pezzullo,²⁸ T. Planche,²⁹ F. Porter,¹¹ E. Prebys,³⁰ C. R. Prior,¹⁶ V. Pronskikh,⁶ R. Ray,⁶ F. Renga,³¹ C. Rogers,¹⁶ I. Sarra,⁷ A. Sato,¹ S. L. Smith,^{27,3} F. Spinella,⁹ D. Stratakis,⁶ M. Syphers,³² N.M. Truong,³⁰ S. Tygier,^{2,3} Y. Uchida,²⁰ and M. Yucel⁶

A new concept to boost the potential of cLFV searches

- A new concept to
 - maximally exploit the PIP-II power
 - permit a Mu2e run with high-Z nuclei
 - make possible rare muon decay searches at FNAL

- A new concept to
 - maximally exploit the PIP-II power

- A new concept to
 - permit a Mu2e run with high-Z nuclei

High-Z vs. low-Z nuclei allows to differentiate NP contributions

- A new concept to
 - permit a Mu2e run with high-Z nuclei

High-Z muonic atoms have short lifetime -> beam estinction à la Mu2e doesn't work

- A new concept to
 - permit a Mu2e run with high-Z nuclei

Fixed Field Alternating Gradient Ring (FFA)

- A new concept to
 - make possible rare muon decay searches at FNAL

A possible schedule

A possible schedule

What about the future of μ -> e γ ?

$\mu \rightarrow e \gamma$ searches and beam rate

- μ -> e γ searches are dominated by accidental background, B $\propto \Gamma_{\mu}^2$
 - Increasing the beam rate increases signal linearly, background quadratically
 - ➡ Sensitivity improves only if B ~ 0
 - Increasing the beam rate helps only if the resolutions are good enough to keep B ~ 0

$\mu \rightarrow e \gamma$ searches and beam rate

$\mu \rightarrow e \gamma$ searches and beam rate

Toward the next generation of $\mu \rightarrow e \gamma$ searches

- An **informal study group** with collaborators from MEG and Mu3e has been setup to develop new concepts and start R&Ds for the next generation of μ -> e γ searches
- Going toward a concept based on:
 - Positron tracking with pixels (à la Mu3e, R&D needed for 25 µm thickness)
 - Good resolution (limited by multiple scattering), high-rate capabilities
 - Tracking with gaseous detectors also considered (synergy with Mu2e-II), but extremely challenging

Tracking layer

- Photon reconstruction with pair conversion

➡ low efficiency (compensated by high beam rate), excellent resolutions

Detector R&D already started for crystals and pair tracker

Sensitivity

Conclusions

- Upgrade programs at PSI and FNAL open new opportunities in muon cLFV searches
- HiMB at PSI will deliver ~ $10^{10} \,\mu/s$
 - Mu3e phase-II already designed for such a high rate
- PIP-II at FNAL
 - Mu2e-II
 - An Advanced Muon Facility is under study —> a unique possibility of adapting the beam to the experiments' needs and exploit synergies having all cLFV experiments in a single place
- Detector R&Ds are well advanced for Mu2e-II, and just started for μ -> e $\gamma,$ with synergic programs
- Interesting synergies with the muon collider program