Charged Lepton Flavour Violation: Theory Introduction

Marco Ardu Univ. de Valencia, IFIC

VNIVERSITAT BÖVALÈNCIA

10/11/2023

WIFAI 2023

• Why LFV?

Channels and BSM expectations

• Effective Field Theory for LFV (mainly $\mu \rightarrow e$)

Conclusion

Outline

Neutrino masses imply Lepton Flavour Violation

The Standard Model Lagrangian (without right-handed ne lepton flavor $U(1)_{L_{\alpha}}$

$$\mathscr{C}_{\alpha} = \begin{pmatrix} \nu_{\alpha} \\ \alpha_L \end{pmatrix}, e_{\alpha} = \alpha_R \text{ with } \alpha = e, \mu, \tau$$

The Standard Model Lagrangian (without right-handed neutrinos) is accidentally invariant under a phase rotation of each

$$U(1)_{L_{\alpha}}: \begin{cases} \ell_{\alpha} \to e^{i\chi_{\alpha}}\ell_{\alpha} \\ e_{\alpha} \to e^{i\chi_{\alpha}}e_{\alpha} \end{cases}$$

Neutrino masses imply Lepton Flavour Violation

The Standard Model Lagrangian (without right-handed ne lepton flavor $U(1)_{L_{\alpha}}$

$$\mathscr{C}_{\alpha} = \begin{pmatrix} \nu_{\alpha} \\ \alpha_L \end{pmatrix}, e_{\alpha} = \alpha_R \text{ with } \alpha = e, \mu, \tau$$

Neutrino oscillations break all symmetries

The Standard Model Lagrangian (without right-handed neutrinos) is accidentally invariant under a phase rotation of each

$$U(1)_{L_{\alpha}}: \begin{cases} \ell_{\alpha} \to e^{i\chi_{\alpha}}\ell_{\alpha} \\ e_{\alpha} \to e^{i\chi_{\alpha}}e_{\alpha} \end{cases}$$

Neutrino masses imply Lepton Flavour Violation

lepton flavor $U(1)_{L_{\alpha}}$

$$\mathscr{C}_{\alpha} = \begin{pmatrix} \nu_{\alpha} \\ \alpha_L \end{pmatrix}, e_{\alpha} = \alpha_R \text{ with } \alpha = e, \mu, \tau$$

Neutrino oscillations break all symmetries

$$\mu^{\pm} \to e^{\pm} \gamma \qquad \tau^{\pm}$$

but at what rates?

The Standard Model Lagrangian (without right-handed neutrinos) is accidentally invariant under a phase rotation of each

$$U(1)_{L_{\alpha}}: \begin{cases} \ell_{\alpha} \to e^{i\chi_{\alpha}}\ell_{\alpha} \\ e_{\alpha} \to e^{i\chi_{\alpha}}e_{\alpha} \end{cases}$$

 $\rightarrow e^{\pm}e^{+}e^{-}$

Charged Lepton Flavour Violation (LFV)

- SM+ ν_R predicts small LFV

 $Br(\mu \to e\gamma) \simeq G_F^2 (\Delta m_\nu^2)^2 \sim 10^{-50}$

Charged Lepton Flavour Violation (LFV) • SM+ ν_R predicts small LFV \mathcal{W} $Br(\mu \rightarrow e\gamma) \simeq G_F^2 (\Delta m_\nu^2)^2 \sim 10^{-50}$ $U_{\mu i}^* \nu_{iL} U_{ei}$

- An observation of LFV would be a clear signature of new physics
- leptogenesis?)
- signals

• It could shed light on the mechanism behind neutrino masses (and potentially on the baryon asymmetry if generated via

• Many models that address unresolved puzzles (independently from neutrino masses) predict potentially observable LFV

Charged Lepton Flavour Violation (LFV) • SM+ ν_R predicts small LFV $Br(\mu \to e\gamma) \simeq G_F^2 (\Delta m_\nu^2)^2 \sim 10^{-50}$ $\frac{\langle \ }{U_{\mu i}^{*}} \stackrel{\forall}{}^{\nu}_{iL} U_{ei}$

- An observation of LFV would be a clear signature of new physics
- leptogenesis?)
- signals
- Cei+Donati 10.1155/2014/282915, Ardu+Pezzullo 2204.08220

• It could shed light on the mechanism behind neutrino masses (and potentially on the baryon asymmetry if generated via

• Many models that address unresolved puzzles (independently from neutrino masses) predict potentially observable LFV

Some LFV reviews: Kuno+Okada <u>hep-ph/9909265</u>, Calibbi+Signorelli <u>1709.00294</u>, Bernstein+Cooper <u>1307.5787</u>

Experimental searches

Process	Current bound on BR	Future Sensitiv
$\mu ightarrow e \gamma$	$< 4.2 imes 10^{-13}$ Meg	10^{-14} megii
$\mu ightarrow ar{ extbf{e}} ee$	$< 1.0 imes 10^{-12}$ sindrum	10^{-16} Mu3e
$\mu A ightarrow e A$	$< 7 imes 10^{-13}$ sindrumii	$\left { m ~10^{-16}} ightarrow 10^{-18}$
$ au o I\gamma$	$< 3.3 imes 10^{-8}$	$3 \times 10^{-9}(e), 10$
$ au ightarrow ear{ extbf{e}} e$	$< 2.7 imes 10^{-8}$	$5 imes 10^{-9}$
$ au o \mu ar{\mu} \mu$	$< 2.1 imes 10^{-8}$	4×10^{-9}
$ au o \mu ar{ extbf{e}} extbf{e}, extbf{e} ar{\mu} \mu$	$< 1.8, 2.7 imes 10^{-8}$ Belle	$3,5 imes10^{-9}$ Belle
$ au ightarrow I \pi^0$	$< 8.0 imes 10^{-8}$	$ $ 4 \times 10 ⁻⁹
$ au ightarrow I\eta$	$< 6.5 imes 10^{-8}$	7×10^{-9}
$\tau \to I \rho$	$< 1.2 imes 10^{-8}$ Belle	10^{-9} Bellell
$K^0 ightarrow \mu^\pm e^\mp$	$< 4.7 imes 10^{-12}$	
$B^0_d o au^\pm \mu^\mp$	$< 1.2 imes 10^{-5}$ LHCb	$\sim 10^{-6}$?
$h ightarrow e^{\pm} \mu^{\mp}$	$< 6.1 imes 10^{-5}$ Atlas	$2.1 imes 10^{-5}$
$h ightarrow e^{\pm} au^{\mp}$	$< 2.2 imes 10^{-3}$ cms	2.4×10^{-4}
$h ightarrow au^{\pm} \mu^{\mp}$	$< 1.5 imes 10^{-3}$ cms	$2.3 imes10^{-4}$ ILC
$Z ightarrow e^\pm \mu^\mp$	$< 7.5 imes 10^{-7}$ Atlas	
$Z ightarrow I^{\pm} au^{\mp}$	$< 10^{-7}$ Atlas	

• Heavy particles decaying into LFV final states

$\mu \rightarrow e$ transitions

Scalar LFV (2HDM,...)

• $\mu \rightarrow e + \overline{e} + e$ $Br(\mu \rightarrow e\overline{e}e) < 10^{-12}$ (SINDRUM) $\rightarrow Br(\mu \rightarrow e\overline{e}e) \sim 10^{-16}$ (Mu3e)

$\rightarrow e$ transitions

Type-II seesaw

Extra gauge bosons

• $\mu \rightarrow e + \overline{e} + e$ $Br(\mu \rightarrow e\overline{e}e) < 10^{-12}$ (SINDRUM) $\rightarrow Br(\mu \rightarrow e\overline{e}e) \sim 10^{-16}$ (Mu3e)

• $\mu \rightarrow e + X$, where X is a light BSM particle

$\mu \rightarrow e$ transitions

Type-II seesaw

Extra gauge bosons

 $Br(\mu \rightarrow eX) \lesssim 10^{-5} \text{ (TWIST)} \rightarrow \text{MEG-II?}$

$\rightarrow e$ conversion in nuclei

Standard calculation in Kuno+Okada hep-ph/9909265

- The muon gets captured by the (Z,A) nucleus and tumbles down to the 1s state
- The SM processes that can happen are:

A.
$$\mu + p \rightarrow \nu_{\mu} + n$$
 (capture)

B.
$$\mu \rightarrow \nu_{\mu} + e + \overline{\nu_{e}}$$
 (Decay-In-Orbit)

• If there are LFV interactions with nucleons, an electron can be emitted without a neutrino (conversion)

- Spin-Independent rate is enhanced by $\propto A^2$ because the process is coherent (similar to WIMP scattering)
- The upcoming experiments (COMET, Mu2e) will deliver extremely intense muon beams allowing to probe $Br(\mu A \rightarrow eA) \sim 10^{-17}$

 $\mu + (Z, A) \rightarrow e + (Z, A)$

$\mu \rightarrow e$ conversion in nuclei

• Sensitivity to the dipole that could compete with $\mu \rightarrow e\gamma$ searches

$\mu \rightarrow e$ conversion in nuclei

• Sensitivity to the dipole that could compete with $\mu \rightarrow e\gamma$ searches

• But can also probe new interactions

Leptoquarks

Z'...? C 9 4

Z prime

$\tau \rightarrow l$ transitions

- Mostly insensitive to loops = if see $\tau \to l$ should be at tree-level if NP scale is above $\Lambda \gtrsim 4 \text{ TeV}$

• One cannot make τ beams, so the sensitivity of $\tau \to l$ processes is $Br(\tau \to l) \sim 10^{-8} \to 10^{-10}$ (LHC(b), BaBar, Belle, Belle-II)

$$\tau \rightarrow l^{\dagger}$$

- Mostly insensitive to loops = if see $\tau \to l$ should be at tree-level if NP scale is above $\Lambda \gtrsim 4 \,\,{
 m TeV}$
- The bigger phase available means there is a plethora of different channels (possible to overconstrain models = distinguish them)

2203.14919

transitions

• One cannot make τ beams, so the sensitivity of $\tau \to l$ processes is $Br(\tau \to l) \sim 10^{-8} \to 10^{-10}$ (LHC(b), BaBar, Belle, Belle-II)

Hadron decays

also

• We can also have hadrons decaying into LFV final states

$$K \to e^{\pm} \mu^{\mp} \qquad \qquad B \to$$

• LFV decays of B meson with au in the final states possibly related to $R_{D^{(*)}}$ anomaly?

• SUSY with RPV?

$$W_{\rm RPV} \supset \lambda_{ijk} L_i Q_j \bar{E}_k$$

 $\tau^{\pm}l^{\mp}$

Heavy bosons decay

• LFV decays of heavy SM particles can be looked for at the LHC

sensitivity \neq constraint)

• Very competitive in the τ sector

• In general with $e\mu$ final states the low-energy probes have a better sensitivity (but

Many channels, many more models... what to do?

- Many models predict LFV = would be nice to know what experiments can tell us in a model-independent way
- If LFV New Physics is heavy ($\Lambda \gtrsim 4 \text{ TeV}$) and it can be integrated out

• Add to the Lagrangian the contact interactions (non-renormalizable operators) compatible with the symmetries

$$\mathcal{C}_{d\leq 4} + \sum_{n>4} \frac{C_n \mathcal{O}_n}{\Lambda^{n-4}}$$

• Observables are calculated in terms of the operator coefficients

 $\int_{\mu} \int_{\mu \to e\gamma} \int_{e} \frac{m_{\mu}}{\Lambda^2} (C_{D,R}^{e\mu} \overline{e} \sigma_{\alpha\beta} P_R \mu + C_{D,L}^{e\mu} \overline{e} \sigma_{\alpha\beta} P_L \mu) F^{\alpha\beta}$

• Observables are calculated in terms of the operator coefficients

$$\binom{u}{L}^{2} > 4.2 \times 10^{-13} \longrightarrow \left(\frac{v}{\Lambda}\right)^{2} C_{D,X}^{e\mu} < 10^{-8}$$

 $\Lambda \gtrsim 10^{4} v \text{ (if } C_{D} \sim 1)$

• Observables are calculated in terms of the operator coefficients

definition)

$$\binom{u}{2} (L^2) < 4.2 \times 10^{-13} \longrightarrow \left(\frac{v}{\Lambda}\right)^2 C_{D,X}^{e\mu} < 10^{-8}$$

 $\Lambda \gtrsim 10^4 v \text{ (if } C_D \sim 1)$

• Translate branching ratios sensitivities/upper bound on New Physics scale (assuming $C \sim 1$; also depend on ops

ulletQFT)

 $\frac{d\vec{C}_n(\mu)}{d\log\mu} = \vec{C}_n(\mu)\gamma + \dots \qquad n = \text{op.dim.}$ $\gamma \text{ anomalous dimension matrix}$

• The Renormalization Group Equations (RGEs) introduce operator mixing

Including loops (RGEs)

SM loops can decorate contact interactions, causing the coefficients to run with the energy scale (like any coupling does in

ulletQFT)

$$\frac{d\overrightarrow{C}_n(\mu)}{d\log\mu} = \overrightarrow{C_n}(\mu)\gamma + \dots$$

• The Renormalization Group Equations (RGEs) introduce operator mixing

Including loops (RGEs)

SM loops can decorate contact interactions, causing the coefficients to run with the energy scale (like any coupling does in

n = op.dim.

 γ anomalous dimension matrix

$$C_{D,X}(m_{\mu}) \sim \frac{m_{\tau}}{m_{\mu}} \frac{e}{16\pi^2} \log\left(\frac{\Lambda}{m_{\mu}}\right) C_{T,X}^{\tau}(\Lambda) \sim C_{T,X}^{\tau}(\Lambda)$$

Loops are interesting because they allow to probe difficultto-detect operators via operator mixing

e

Davidson+Echenard 22

• Focus on $\mu \rightarrow e$ because it has the best upcoming sensitivity

$$\mathscr{L}_{m_{\mu}} = \frac{1}{v^2} \sum_{X \in \{L,R\}} \left[C_{D,X}^{e\mu}(m_{\mu}\overline{e}\sigma^{\alpha\beta}P_{X}\mu)F_{\alpha\beta} + C_{S,XX}^{e\mu ee}(\overline{e}P_{X}\mu)(\overline{e}P_{X}e) + C_{V,LX}^{e\mu ee}(\overline{e}\gamma^{\alpha}P_{X}\mu)F_{\alpha\beta} + C_{S,XX}^{e\mu ee}(\overline{e}P_{X}\mu)F_{\alpha\beta} + C_{S,XY}^{e\mu ee}(\overline{e}P_{$$

ellipse in 12 dimensions

Bottom-up EFT for $\mu \rightarrow e$ $(\overline{e}\gamma_{\alpha}P_{X}e) + C_{V,RX}^{e\mu ee}(\overline{e}\gamma^{\alpha}P_{R}\mu)(\overline{e}\gamma_{\alpha}P_{X}e) + C_{Alight,X}\mathcal{O}_{Alight,X} + C_{Aheavy\perp,X}\mathcal{O}_{Aheavy\perp,X} + h \cdot c \cdot (\overline{e}\gamma_{\alpha}P_{X}e) + C_{Alight,X}\mathcal{O}_{Alight,X} + C_{Aheavy\perp,X}\mathcal{O}_{Aheavy\perp,X} + h \cdot c \cdot (\overline{e}\gamma_{\alpha}P_{X}e) + C_{Alight,X}\mathcal{O}_{Alight,X} + C_{Aheavy\perp,X}\mathcal{O}_{Aheavy\perp,X} + h \cdot c \cdot (\overline{e}\gamma_{\alpha}P_{X}e) + C_{Alight,X}\mathcal{O}_{Alight,X} + C_{Aheavy\perp,X}\mathcal{O}_{Aheavy\perp,X} + h \cdot c \cdot (\overline{e}\gamma_{\alpha}P_{X}e) + C_{Alight,X}\mathcal{O}_{Alight,X} + C_{Aheavy\perp,X}\mathcal{O}_{Aheavy\perp,X} + h \cdot c \cdot (\overline{e}\gamma_{\alpha}P_{X}e) + C_{Alight,X}\mathcal{O}_{Aheavy\perp,X} + h \cdot c \cdot (\overline{e}\gamma_{\alpha}P_{X}e) + C_{Alight,X}\mathcal{O}_{Aheavy\perp,X}\mathcal{O}_{Aheavy\perp,X} + h \cdot c \cdot (\overline{e}\gamma_{\alpha}P_{X}e) + C_{Aheavy\perp,X}\mathcal{O}_{Aheavy\perp,X} + C_{Aheavy\perp,X}\mathcal{O}_{Aheav} + C_{Aheavy\perp,X}\mathcal{O}_{Aheav} + C_{Aheav} + C_{Aheav}\mathcal{O}_{Aheav} + C_{Aheav}$

• Data $(\mu \to e_X \gamma, \mu \to e_X \overline{e}_Y e_Z, \mu A \to e_X A \times 2)$ constrain 12 operator coefficients at low energy to the interior of an

The RGEs can tell us what these constrained ulletdirections are at the high scale Λ

$$\overrightarrow{C}(m_{\mu}) = \overrightarrow{C}(\Lambda) \cdot U(m_{\mu}, \Lambda)$$

Distinguishing models?

• Suppose we observe $\mu \rightarrow e$ in the upcoming experiments (with theoretical optimism means a point in the 12-d ellipse)

- And suppose I know regions where a model CAN NOT sit = If I see $\mu \rightarrow e$ there I can exclude it
- Instead of doing parameter scans like we usually do with top-down studies, this could be a complementary approach

Ex: Type-II seesaw (SM + Triplet Δ)

 $\mathscr{L} \supset F_{\alpha\beta} \overline{\mathscr{C}_{\alpha}^{c}} \epsilon \Delta \cdot \tau \mathscr{C}_{\beta} + M_{\Delta} \lambda_{H} H^{T} \epsilon \Delta \cdot \tau H + \dots$

 $[m_{\nu}]_{\alpha\beta} \sim 0.03 \text{ eV } F_{\alpha\beta} \frac{\lambda_H}{10^{-12}} \frac{\text{TeV}}{M_{\star}}$

• Neutrino masses directly related to the Triplet Yukawas, but ordering, lightest mass and Majorana phases are unknown

 $C_{V,LL}^{e\mu ee} \qquad (\mu \to e_L \overline{e}_L e_L)$

 $C_{V,LX}^{e\mu ee} \quad (\mu \to e_L \overline{e}_X e_X) \qquad C_{A,L}^{e\mu} \quad (\mu A \to e_L A)$

 $C_{D,R}^{\circ\mu} \quad (\mu \to e_L \gamma)$

• Cannot predict sizable $\mu \rightarrow e_R$ (because triplet couples to left-handed leptons and these are suppressed by m_e)

• Cannot predict sizable $\mu \rightarrow e_R$ (because triplet couples to left-handed leptons and these are suppressed by m_e)

• $\mu A \rightarrow e_L A$ and $\mu \rightarrow e_L \overline{e}_R e_R$ vectors are proportional (because they come from the same diagram)

• Cannot predict sizable $\mu \rightarrow e_R$ (because triplet couples to left-handed leptons and these are suppressed by m_e)

• $\mu A \rightarrow e_L A$ and $\mu \rightarrow e_L \overline{e}_R e_R$ vectors are proportional (because they come from the same diagram)

• The $C_{VLL}^{e\mu ee}$ vector is expected to be large because is at tree-level but can also vanish (known for $0\nu 2\beta$ that m_{ee} can vanish)

 $\propto m_{ee}m_{\mu e}^{*}$

• Cannot predict sizable $\mu \rightarrow e_R$ (because triplet couples to left-handed leptons and these are suppressed by m_{ρ})

know what the model cannot do!)

• $\mu A \rightarrow e_L A$ and $\mu \rightarrow e_L \overline{e}_R e_R$ vectors are proportional (because they come from the same diagram)

• The $C_{VLL}^{e\mu ee}$ vector is expected to be large because is at tree-level but can also vanish (known for $0\nu 2\beta$ that m_{ee} can vanish)

$$\propto m_{ee}m_{\mu}^*$$

• Surprisingly also the dipole can be suppressed (although it requires some tuned cancellations and high m_{ν} – but we want to

• Any observations outside the colored region can exclude the type-II seesaw!

• Luckily when coefficients are far from their "natural" values it means that we can say something about the other two

Conclusion

- Neutrino masses imply leptonic New Physics that must introduce Lepton Flavour Violation
- Global symmetries of the SM are easily violated when new states and interactions are introduced = many models predict LFV
- Many different channels are available to probe a variety of BSM models
- New experiments are coming for LFV channels, and, especially in the µ → e sector, they will reach impressive Branching ratio sensitivities
- By assuming heavy LFV physics, we can parametrise $\mu \rightarrow e$ data in terms of (in principle) observable EFT coefficients
- Running the EFT from the bottom-up, we identify the region where BSM theories should sit and explore how different models fill this space: if we find regions that are unaccessible we have a way to rule out the model with future experiments

Back-up

Low-energy basis

$$\begin{aligned} \mathcal{O}^{ll}_{V,YY} &= (\bar{e}\gamma^{\alpha}P_{Y}\mu)(\bar{l}\gamma_{\alpha}P_{Y}l), \quad \mathcal{O}^{ll}_{V,YX} &= (\bar{e}\gamma^{\alpha}P_{Y}\mu)(\bar{l}\gamma_{\alpha}P_{X}l) \\ \mathcal{O}^{ll}_{S,YY} &= (\bar{e}P_{Y}\mu)(\bar{l}P_{Y}l) \qquad \mathcal{O}^{\tau\tau}_{S,YX} &= (\bar{e}P_{Y}\mu)(\bar{\tau}P_{X}\tau) \\ \mathcal{O}^{\tau\tau}_{T,YY} &= (\bar{e}\sigma^{\alpha\beta}P_{Y}\mu)(\bar{\tau}\sigma_{\alpha\beta}P_{Y}\tau) \\ \mathcal{O}^{qq}_{V,YY} &= (\bar{e}\gamma^{\alpha}P_{Y}\mu)(\bar{q}\gamma_{\alpha}P_{Y}q) \qquad, \quad \mathcal{O}^{qq}_{V,YX} &= (\bar{e}\gamma^{\alpha}P_{Y}\mu)(\bar{q}\gamma_{\alpha}P_{X}q) \\ \mathcal{O}^{qq}_{S,YY} &= (\bar{e}P_{Y}\mu)(\bar{q}P_{Y}q) \qquad, \quad \mathcal{O}^{qq}_{S,YX} &= (\bar{e}P_{Y}\mu)(\bar{q}P_{X}q) \\ \mathcal{O}^{qq}_{T,YY} &= (\bar{e}\sigma^{\alpha\beta}P_{Y}\mu)(\bar{q}\sigma_{\alpha\beta}P_{Y}q) \\ \mathcal{O}_{D,L} &= m_{\mu}\overline{e_{R}}\sigma^{\alpha\beta}\mu_{L}F_{\alpha\beta} \qquad m_{\mu}\overline{e_{L}}\sigma^{\alpha\beta}\mu_{R}F_{\alpha\beta} \\ \mathcal{O}_{GG,Y} &= \frac{1}{v}(\bar{e}P_{Y}\mu)G_{\alpha\beta}G^{\alpha\beta} \quad, \quad \mathcal{O}_{G\bar{G},Y} &= \frac{1}{v}(\bar{e}P_{Y}\mu)G_{\alpha\beta}\bar{G}^{\alpha\beta} \\ \mathcal{O}_{GGV,Y} &= \frac{1}{v^{2}}(\bar{e}\gamma_{\sigma}P_{Y}\mu)G_{\alpha\beta}\beta\beta G^{\alpha\sigma} \quad, \quad \mathcal{O}_{F\bar{F},Y} &= \frac{1}{v}(\bar{e}P_{Y}\mu)F_{\alpha\beta}\tilde{F}^{\alpha\beta} \\ \mathcal{O}_{FFV,Y} &= \frac{1}{v}(\bar{e}\gamma^{\sigma}P_{Y}\mu)F^{\alpha\beta}\partial_{\beta}F_{\alpha\sigma} \quad, \quad \mathcal{O}_{F\bar{F}V,Y} &= \frac{1}{v}(\bar{e}\gamma^{\sigma}P_{Y}\mu)F^{\alpha\beta}\partial_{\beta}\tilde{F}_{\alpha\sigma} \end{aligned}$$

where $l \in \{e, \mu\}, q \in \{u, d, s, c, b\}$

$$BR(\mu \to e\gamma) = 384\pi^{2}(C_{DL}^{e\mu} + C_{DR}^{e\mu})$$
$$BR(\mu \to e\overline{e}e) = \frac{C_{S,LL}^{e\mu ee} + C_{S,RR}^{e\mu ee}}{8} + 2$$
$$+(64\ln\frac{m_{\mu}}{m_{e}} - 136)(eC_{D,R}^{e\mu})$$

 $BR_{SI}(\mu A \to eA) = B_A(d_A C_{DR}^{e\mu} + C_{A,L}^2 + d_A C_{DI}^{e\mu} + C_{A,R}^2)$

$\mu \rightarrow e$ Rates

 $C_{V,RR}^{e\mu ee} + 4eC_{D,L}^{e\mu}^{2} + 2 C_{V,LL}^{e\mu ee} + 4eC_{D,R}^{e\mu}^{2}$ $^{2} + eC_{D,L}^{e\mu}$ $^{2}) + C_{V,RL}^{e\mu ee} + 4eC_{D,L}^{e\mu}$ $^{2} + C_{V,LR}^{e\mu ee} + 4eC_{D,R}^{e\mu}$ 2

Type-II coefficients

• We list here the EFT coefficients in the type-II seesaw

$$C_{DR}^{e\mu} = \frac{3e}{128\pi^{2}} \left[\frac{[m_{\nu}m_{\nu}^{\dagger}]_{e\mu}}{\lambda_{H}^{2}\nu^{2}} \left(1 + \frac{32}{27} \frac{\alpha_{e}}{4\pi} \ln \frac{M_{\Delta}}{m_{\tau}} \right) + \frac{12}{22} \right]$$

$$C_{V,LL}^{e\mu ee} = \frac{[m_{\nu}^{*}]_{\mu e}[m_{\nu}]_{ee}}{2\lambda_{H}^{2}\nu^{2}} + \frac{\alpha_{e}}{3\pi\lambda_{H}^{2}\nu^{2}} \left[m_{\nu}^{\dagger} \ln \left(\frac{M_{\Delta}}{m_{\alpha}} \right) m_{\nu} \right]$$

$$C_{V,LR}^{e\mu ee} = \frac{\alpha_{e}}{3\pi\lambda_{H}^{2}\nu^{2}} \left[m_{\nu}^{\dagger} \ln \left(\frac{M_{\Delta}}{m_{\alpha}} \right) m_{\nu} \right]_{\mu e}$$

 $\frac{116\alpha_e}{27\pi} \ln \frac{m_\tau}{m_\mu} \sum_{\alpha \in e\mu} \frac{[m_\nu]_{\mu\alpha} [m_\nu^*]_{e\alpha}}{\lambda_H^2 \nu^2} \Big]$

v = 174 GeV

μe