

Elena Pompa Pacchi

SAPIENZA Università di Roma

WIFAI 2023

Workshop Italiano sulla Fisica ad Alta Intensità

Roma 8-10 Novembre 2023 Aula Magna Adalberto Libera – ex Mattatoio Via Aldo Manuzio 68L

Status and perspective of Dark Sector searches at ATLAS&CMS

Road trip to dark sectors in ATLAS and CMS is long

Many interesting results!!

Selection of topics driven mostly by personal taste (and representativeness of the field!)

BEWARE!

Road trip to dark sectors in ATLAS and CMS is long

Many interesting results!!

Selection of topics driven mostly by personal taste (and representativeness of the field!)

BEWARE!

Dark sectors models covered here

Dark sectors models covered here

Dark sectors models covered here

ATLAS & CMS @ the LHC

ATLAS & CMS @ the LHC

I am like ATLAS and CMS donkey, I have layers!

ATLAS & CMS @ the LHC

I am like ATLAS and CMS donkey, I have layers!

Built to be complementary in performances:

В	Solenoid: 4T	Soleno Toroid: 0.5T (b 1T (end
ID	$\sigma/p_{\rm T} \sim 1.5 \cdot 10^{-4} p_{\rm T} + 0.005$	$\sigma/p_{\rm T} \sim 5.10$
ECAL	$\sigma/E \sim 3\%/\sqrt{E} + 0.003$	σ/ <i>E</i> ~ 10 %
HCAL	$\sigma/E \sim 100 \%/\sqrt{E} + 0.05$	$\sigma/E \sim 50\%$
Muons	$\sigma/p_{\rm T} \sim 1\% @ 50 {\rm GeV}$ $\sigma/p_{\rm T} \sim 10\% @ 1 {\rm TeV}$	$\frac{\sigma}{p_{\rm T}} \sim 2\%$ $\frac{\sigma}{p_{\rm T}} \sim 10\%$

ATLAS & CMS @ the LH

I am like ATLAS and CMS donkey, I have layers!

HC	Built to be complementa performances:		
ctors, aimed at			
kinds of particles	B	Solenoid: 4T	Soleno Toroid: 0.5T (b 1T (end
	ID	$\sigma/p_{\rm T} \sim 1.5 \cdot 10^{-4} p_{\rm T} + 0.005$	$\sigma/p_{\rm T} \sim 5.10$
	ECAL	$\sigma/E \sim 3 \% / \sqrt{E} + 0.003$	$\sigma/E \sim 10 \%$
	HCAL	$\sigma/E \sim 100 \% / \sqrt{E} + 0.05$	$\sigma/E \sim 50\%$
	Muons	$\sigma/p_{\rm T} \sim 1\% @ 50 {\rm GeV}$ $\sigma/p_{\rm T} \sim 10\% @ 1 {\rm TeV}$	$\frac{\sigma/p_{\rm T}}{\sigma/p_{\rm T}} \sim 2\%$

ATLAS larger than CMS \rightarrow sensitivity to more displaced objects

Reconstruction complexity and accuracy

Level 1 (L1) trigger

High Level Trigger (HLT)

1 kHz

Reconstruction complexity and accuracy

Level 1 (L1) trigger

We need to know in advance how interesting events will look like!!

High Level Trigger (HLT)

THE PRESENT (or Run-2 results)

Outside detector volume

Visible dark photon:

Massive, detector stable γ_d Golden discovery channel: Monojet (Higgs portal) Signature: $E_T + jets$

ATLAS [ATL-PHYS-PUB-2021-020]

Prompt dark photon:

• Collimated muon pairs

Tracking detector

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

Outside detector volume

Visible dark photon:

Massive, detector stable γ_d Golden discovery channel: Monojet (Higgs portal) Signature: $E_T + jets$

ATLAS [ATL-PHYS-PUB-2021-020]

Prompt dark photon:

• <u>Collimated muon pairs</u>

CMS, FRVZ [PLB796(2019)131]

CMS, CERN-EP-2023-165

Tracking detector

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

Outside detector volume

Visible dark photon:

<u>Massive, detector stable γ_d </u> Golden discovery channel: Monojet (Higgs portal) Signature: $E_T + jets$

ATLAS [ATL-PHYS-PUB-2021-020]

Prompt dark photon:

Collimated muon pairs

CMS, FRVZ [PLB796(2019)131]

CMS, CERN-EP-2023-165

Collimated lepton pairs

ATLAS, FRVZ [JHEP02(2016)062]

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

Outside detector volume

Displaced dark photon:

Visible dark photon:

<u>Massive, detector stable γ_d </u> Golden discovery channel: Monojet (Higgs portal) Signature: $E_T + jets$

ATLAS [ATL-PHYS-PUB-2021-020]

Prompt dark photon:

Collimated muon pairs

CMS, FRVZ [PLB796(2019)131]

<u>CMS, CERN-</u> EP-2023-165

Collimated lepton pairs

ATLAS, FRVZ [JHEP02(2016)062]

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

Outside detector volume

Displaced dark photon:

Visible dark photon:

<u>Massive, detector stable γ_d </u> Golden discovery channel: Monojet (Higgs portal) Signature: $E_T + jets$

ATLAS [ATL-PHYS-PUB-2021-020]

Prompt dark photon:

Collimated muon pairs

CMS, FRVZ [PLB796(2019)131]

<u>CMS, CERN-</u> EP-2023-165

Collimated lepton pairs

ATLAS, FRVZ [JHEP02(2016)062]

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

Outside detector volume

Displaced dark photon:

CMS, low mass [JHEP04(2022)062] CMS, high mass [JHEP05(2023)228] ATLAS, high mass [PRD99(2019)012001] CMS, inelastic DM [CERN-EP-2023-083]

Tracking detector

Visible dark photon:

<u>Massive, detector stable γ_d </u> Golden discovery channel: Monojet (Higgs portal) Signature: $E_T + jets$

ATLAS [ATL-PHYS-PUB-2021-020]

Prompt dark photon:

Collimated muon pairs

CMS, FRVZ [PLB796(2019)131]

<u>CMS, CERN-</u> EP-2023-165

Collimated lepton pairs

ATLAS, FRVZ [JHEP02(2016)062]

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

Outside detector volume

Displaced dark photon:

CMS, low mass [JHEP04(2022)062] <u>CMS, high mass [JHEP05(2023)228]</u> ATLAS, high mass [PRD99(2019)012001] CMS, inelastic DM [CERN-EP-2023-083]

Displaced fermions

Tracking detector

Visible dark photon:

<u>Massive, detector stable γ_d </u> Golden discovery channel: Monojet (Higgs portal) Signature: $E_T + jets$

ATLAS [ATL-PHYS-PUB-2021-020]

Prompt dark photon:

Collimated muon pairs

CMS, FRVZ [PLB796(2019)131]

<u>CMS, CERN-</u> EP-2023-165

Collimated lepton pairs

ATLAS, FRVZ [JHEP02(2016)062]

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

Outside detector volume

Displaced dark photon:

CMS, low mass [JHEP04(2022)062] CMS, high mass [JHEP05(2023)228] ATLAS, high mass [PRD99(2019)012001] CMS, inelastic DM [CERN-EP-2023-083]

Displaced fermions

ATLAS, FRVZ, VBF [ATLAS-CONF-2023-051] + combination

ATLAS, HAHM and FRVZ, ggF and WH [JHEP06(2023)153]

Tracking detector

Visible dark photon:

<u>Massive, detector stable γ_d </u> Golden discovery channel: Monojet (Higgs portal) Signature: $E_T + jets$

ATLAS [ATL-PHYS-PUB-2021-020]

Prompt dark photon:

Collimated muon pairs

<u>CMS, FRVZ [PLB796(2019)131]</u>

Collimated lepton pairs

ATLAS, FRVZ [JHEP02(2016)062]

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

Dark photons searches covered here

Outside detector volume

Displaced dark photon: Displaced muons

CMS, low mass [JHEP04(2022)062] CMS, high mass [JHEP05(2023)228]

ATLAS, high mass [PRD99(2019)012001] MS, inelastic DM [CERN-EP-2023-083

Displaced fermions

ATLAS, FRVZ, VBF [ATLAS-CONF-2023-051] + combination

ATLAS, HAHM and FRVZ, ggF and WH [JHEP06(2023)153]

Tracking detector

Visible dark photon:

<u>Massive, detector stable γ_d </u> Golden discovery channel: Monojet (Higgs portal) Signature: E_T + jets ATLAS [ATL-PHYS-PUB-2021-020]

Prompt dark photon:

Collimated muon pairs

CMS, FRVZ [PLB796(2019)131]

CMS, CERN-EP-2023-165

Collimated lepton pairs

ATLAS, FRVZ JHEP02(2016)062

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

 m_{γ_d}

Displaced massive γ_d - displaced muons

ggF produced Higgs boson + HAHM (Higgs + vector portal)

CMS, low mass [JHEP04(2022)062]

2017-2018 data (101fb⁻¹, $\sqrt{s} = 13$ TeV)

<u>Soft muons</u> \rightarrow Scouting!

HLT muon trigger $p_{\rm T}$ threshold decreased

(trigger frequency increased to 3kHz), event size reduced to have similar bandwidth wrt standard trigger

- Muon hits in at least 2 layers in the ID required at L1 trigger \rightarrow loss in efficiency for muons produced after ID
- Reduced info in the event \rightarrow simpler analysis required

Displaced massive γ_d - displaced fermions

ggF/WH/VBF Higgs boson + HAHM* (Higgs + vector portal)

*FRVZ was studied as well

ATLAS, HAHM and FRVZ, ggF and WH [JHEP06(2023)153]

The challenges

Yesterday's offline reconstruction = today's online one?

THE FUTURE (is now?)

 \rightarrow poor discrimination

*AUC = Area Under the Curve of the ROC curve, the larger, the more the AE is discriminating between S and B

Examples different from input \rightarrow large

Training examples Examples out of training distribution

Reconstruction error

Normalised AE (NAE) learn probability distribution of input \rightarrow anomalous events correctly identified

Training on top-jets, testing on semivisible jets

 \rightarrow random classifier, AUC ~ 0.5

 \rightarrow poor discrimination

*AUC = Area Under the Curve of the ROC curve, the larger, the more the AE is discriminating between S and B

Examples different from input \rightarrow large

Training examples Examples out of training distribution

Reconstruction error

Normalised AE (NAE) learn probability distribution of input \rightarrow anomalous events correctly identified

CMS Simulation Preliminary AUC^{1.0} Average of 0.717 4000 0.9 10 NAEs 0.718 3000 0.8 2000 2000 0.7 0.739 0.711 0.685 0.681 Ê 0.6 0.704 1500 1000 0.684 0.1 0.3 0.5 0.7 r_{inv}

Training on top-jets, testing on semivisible jets

 \rightarrow random classifier, AUC ~ 0.5

To know more...

CMS performance note [CMS DP -2023/071]

- EPS 2023 proceeding
- EPS 2023 poster

Triggering displaced, non-pointing, soft objects

Muons searches limited by:

- Soft muons \rightarrow high L1 $p_{\rm T}$ thresholds ullet
- Displaced muons \rightarrow L1 muons pointing to the beamspot assumption \bullet
- Collimated muons \rightarrow only one can be trigger seed \bullet

Triggering displaced, non-pointing, soft objects Muons searches limited by:

Soft muons \rightarrow high L1 $p_{\rm T}$ thresholds

NEW

- Displaced muons \rightarrow L1 muons pointing to the beamspot assumption
- Collimated muons \rightarrow only one can be trigger seed

Triggering displaced, non-pointing, soft objects Muons searches limited by:

- Soft muons \rightarrow high L1 $p_{\rm T}$ thresholds
- Displaced muons \rightarrow L1 muons pointing to the beamspot assumption
- Collimated muons \rightarrow only one can be trigger seed

In ATLAS standard tracking: $|d_0| < 10 \,\mathrm{mm} \rightarrow \mathrm{displaced tracks}$ suppressed! \Rightarrow Large Radius Tracking (LRT): $|d_0| < 300 \,\mathrm{mm}$ and $|z_0| < 500 \,\mathrm{mm}$

In Run-2 LRT was run only on 10% of data (computation time too long)

In Run-3 already running at the HLT level, expected sizeable sensitivity

Conclusion

Dark Sectors are challenging search candidates \rightarrow different parameters, very different signatures

 \rightarrow unconventional final states, pushing detector capabilities!

Extensively studied during Run-2, many challenges were identified, some already overcame in Run-3

Exciting prospects for the future!

15th International workshop of Identification of Dark Matter

LHCP2023: HNLs searches in ATLAS & CMS LHCP2023: ALPs sarches in ATLAS, CMS, LHCb

- CMS: $H_d \rightarrow W^+W^-$ (fully and semi-leptonic) [CERN-EP-2023-216] ATLAS: $H_d \rightarrow W^+W^-$ (semi-leptonic) [JHEP07(2023)116]
- ATLAS: $H_d \rightarrow VV$ (fully hadronic) [PRL.126.121802]

LHC Dark Matter Working Group (LHC DM WG) -----> Dark Matter Models for Run 3 May 13-17

- Past conferences about DM searches:
- Dark Matter 2023 Conference
- Dark Matter UCLA 2023
- Light Dark World 2023

ggF/WH/VBF Higgs boson + HAHM* (Higgs + vector portal)

*FRVZ was studied as well for ggF and WH

ATLAS, HAHM and FRVZ, ggF and WH [JHEP06(2023)153]

Prompt massive γ_d - prompt lepton pairs

ggF produced Higgs boson + FRVZ (Higgs + vector portal)

<u>CMS, FRVZ [PLB796(2019)131]</u> & <u>ATLAS, FRVZ [JHEP02(2016)062]</u>

 g_{OOOOOO}

HLSP

CMS, CERN-EP-2023-165

Prompt massive γ_d - prompt lepton pairs

ggF produced Higgs boson + FRVZ (Higgs + vector portal)

<u>CMS, FRVZ [PLB796(2019)131]</u> & <u>ATLAS, FRVZ [JHEP02(2016)062]</u>

 g_{OOOOOO}

Complementary sensitivities:

• ATLAS where m_{γ_d} decays forbidden or vetoed • CMS elsewhere N.B. ATLAS still Run-1 result!

CMS, CERN-EP-2023-165

Prompt massive γ_{d} - prompt lepton pairs

ggF produced Higgs boson + FRVZ (Higgs + vector portal)

<u>CMS, FRVZ [PLB796(2019)131]</u> & <u>ATLAS, FRVZ [JHEP02(2016)062]</u>

 g_{OOOOOO}

Complementary sensitivities:

• ATLAS where m_{γ_d} decays forbidden or vetoed • CMS elsewhere N.B. ATLAS still Run-1 result!

CMS, CERN-EP-2023-165

Invisible γ_d - ZH production mode

ZH produced Higgs boson + dark photon production

ATLAS [JHEP07(2023)133]

 $= E_{T} + \gamma$

Outside detector volume

Tracking detector

<u>CMS [JHEP10(2019)139]</u>

ATLAS [JHEP07(2023)133]

 $E_T + \gamma$

Outside detector volume Tracking detector

<u>CMS [JHEP10(2019)139]</u>

CMS [JHEP03(2021)011] + combination

Dark QCD searches covered here

Semi-visible jets

Sensitive to:

- *m*_Φ
- *r_{inv}*
- *m*_D
- λ (coupling strength)

ATLAS, t-channel [CERN-EP-2023-084]

 q_{dark}

• m_D • α_D (running coupling of dark QCD)

CMS, s-channel [JHEP06(2022)156]

Elena Pompa Pacchi on behalf of ATLAS and CMS | WIFAI 20203 | 09/11/2023

27

Semi-visible jets

Sensitive to:

- *m*_Φ
- r_{inv}
- m_D
- λ (coupling strength)

ATLAS, t-channel [CERN-EP-2023-084]

 $E_{\rm T}^{miss}$ trigger, background estimated via CRs enriched in different type of bkgs

Jets angular separation

Limits on xSec

ATLAS

Both di-jet events with high $E_{\rm T}^{miss}$ close-by to jets

• α_D (running coupling of dark QCD)

CMS, s-channel [JHEP06(2022)156]

Semi-visible jets

Sensitive to:

- *m*_Φ
- *r*_{inv}
- m_D
- λ (coupling strength)

ATLAS, t-channel [CERN-EP-2023-084]

 $E_{\rm T}^{miss}$ trigger, background estimated via CRs enriched in different type of bkgs

Jets angular separation

ATLAS

Sensitive to:

- m_{Z'}
- r_{inv}
- m_D
- α_D (running coupling of dark QCD)

CMS, s-channel [JHEP06(2022)156]

Semi-visible jets

Sensitive to:

- *m*_Φ
- *r*_{*inv*}
- m_D
- λ (coupling strength)

ATLAS, t-channel [CERN-EP-2023-084]

 $E_{\rm T}^{miss}$ trigger, background estimated via CRs enriched in different type of bkgs

Jets angular separation

ATLAS

Sensitive to:

- m_{Z'}
- r_{inv}
- m_D
- α_D (running coupling of dark QCD)

CMS, s-channel [JHEP06(2022)156]

Muons searches limited by:

- Soft muons \rightarrow high L1 $p_{\rm T}$ thresholds ullet
- Displaced muons \rightarrow L1 muons pointing to the beamspot assumption \bullet
- Collimated muons \rightarrow only one can be trigger seed \bullet

Muons searches limited by:

- Soft muons \rightarrow high L1 $p_{\rm T}$ thresholds
- Displaced muons \rightarrow L1 muons pointing to the beamspot assumption
- Collimated muons \rightarrow only one can be trigger seed

Muons searches limited by:

- Soft muons \rightarrow high L1 $p_{\rm T}$ thresholds
- Displaced muons \rightarrow L1 muons pointing to the beamspot assumption
- Collimated muons \rightarrow only one can be trigger seed

CMS Scouting triggers:

- Now running at $30 \, \text{kHz}$ (instead of $3 \, \text{kHz}$) \rightarrow more sensitivity so soft regime
- More complete data format \rightarrow more complex analyses

Muons searches limited by:

- Soft muons \rightarrow high L1 $p_{\rm T}$ thresholds
- Displaced muons \rightarrow L1 muons pointing to the beamspot assumption
- Collimated muons \rightarrow only one can be trigger seed

CMS Scouting triggers:

- Now running at $30 \, \text{kHz}$ (instead of $3 \, \text{kHz}$) \rightarrow more sensitivity so soft regime
- More complete data format \rightarrow more complex analyses

Run-3 and HL projection of the ATLAS analysis for displaced Dark Photon Jets (DPJs) [ATL-PHYS-PUB-2019-002]

ATLAS Primary Tracking

