Second Italian Workshop on the Physics at High Intensity

> Rome, 8–10 November 2023

Spectroscopy at Belle II

A. Boschetti

The rebirth of hadron spectroscopy

- Lots of unexpected, puzzling experimental results
 - o especially in heavy quarkonium sector
- Difficulties in QCD calculations hinder accurate predictions for spectra
- Interplay of experimental results and effective models/LQCD is needed

Why heavy hadrons

Multi-quark systems are possible at any energy [Jaffe, Wilkez, PRL 91 232003 (2003)]

However, no smoking gun to distinguish $q\overline{q}$ from $qq\overline{q}\overline{q}$ in light sector

With heavy quarks separating conventionals and exotics is much simpler, e.g.

Mass > 3 GeV/c²

• Small width ($\Gamma/M < 0.1$)

- Large BF for J/ψ (or $D\overline{D}$) + X decay
- ⇒ Must contain cc pair

XYZ states

What are they? Several models compete:

- Standard quarkonia [Swanson, PRD 91, 034009 (2015)]
- **Meson molecules**: shallow bound states of two mesons [Guo *et al.*, Rev.Mod.Phys.90,015004 (2018)]
- **Compact tetraquarks**: diquark-antidiquark states bound by the color force [Polosa *et al.*, PRD89, 114010 (2014)]
- **Hybrids**: colored QQbar states with bound excited gluon [Meyer and Swanson, Prog.Part.Nucl.Phys. 82, 21 (2015)]
- **Hadroquarkonium**: QQbar state surrounded by a cloud of light quarks [Dubinskij *et al.*, PLB 666, 344 (2008)]

Comprehensive reviews

- Brambilla *et al.*, Eur. Phys. J. C (2011) 1534
- Olsen *et al.*, Rev. Mod. Phys. 90 (2018) 015003

Belle II at SuperKEKB

- Super B-factory \Rightarrow optimized for $\Upsilon(4S)$
- Quarkonium spectroscopy
 - **Tunable beam energy**: from $\Upsilon(1S)$ to $\Upsilon(6S)$
 - Projected luminosity ~ 40x wrt previous B-factory

Quarkonium at Belle II

• Production

- Decays
 - Hidden flavor **transitions**: radiative, hadronic
 - **Decays**: above threshold ⇒ open flavor | below threshold ⇒ leptonic, hadronic
- Analysis techniques
 - **Exclusive**: complete decay reconstruction ⇒ very clean samples
 - **Quasi-exclusive**: Full Event Interpretation (FEI) ⇒ sum of exclusive modes
 - Inclusive: missing momentum. Knowledge of collision energy \Rightarrow full reco not required \Rightarrow high ϵ

Above Υ (4S) scans

High energy scans (a) Belle and BaBar \Rightarrow R_h

- Peaks at 10.86 and 11.02 GeV
 ⇒ Y(5S), Y(6S)
- Dips at 10.65, 10.75 GeV

Discovery of Y(10753) in $\pi\pi$ transitions

 $\sigma(\Upsilon \pi^+ \pi^-)$: peaks at 10.89, 11.02 GeV

Bump at 10.75 GeV ?

We want to know more about the nature of this structure

[Belle, JHEP 10 (2019) 220]

Fitting the R_b scans

Coherent sum of continuum and 3 BW functions [Dong *et al.*, Chin. Phys. C 44 (2020) 8, 083001]

$Mass/(MeV/c^2)$	10761 ± 2	10882 ± 1	11001 ± 1
Width/MeV	48.5 ± 3.0	49.5 ± 1.5	35.1 ± 1.2

Coupled channel analysis using the **K matrix** formalism [Hüsken *et al.*, PRD 106 (2022) 9, 094013]

SuperKEKB high energy scan data

~4 times the Belle luminosity between [10.6, 10.85] GeV has been recently collected (2021)

Belle II analyses

Observation of Y(10753) $\rightarrow \omega \chi_{h1}(1P)$

Motivated by prediction for S–D mixed state [PRD 104 034036 (2021)]:

BR comparable with Y_h → π⁺ π⁻ Υ(nS),

 $\frac{\mathcal{B}(\omega\chi_{b1})}{\mathcal{B}(\omega\chi_{b2})} \sim \frac{1}{5}$

Inspired by the decay modes observed by BESIII:

- $Y(4230) \rightarrow \chi_{c0}(1P)\omega$ $Y(4230) \rightarrow \gamma X(3872)$

PRL 130, 091902 (2023)

Observation of Y(10753) $\rightarrow \omega \chi_{h1}(1P)$

- Belle II, 1.6, 9.8, and 4.7 fb⁻¹ Belle II data σ(e⁺e⁻→ωχ_{b1}) (pb) The signal is larger than in A Belle data Total fit ---- Solution I Y(10753) → Y(2S)π+π----- Solution II (Compare with $\Upsilon(5S)$) Ċ ้อ ň The signal at $\Upsilon(5S)$ is likely a **tail** 10.75 10.75 10.8 10.85 10.8 10.85 10.7s (GeV) PRL 130, 091902 (2023)
- Two J^{PC} = 1⁻⁻ states, ΔM = 120 MeV, 1 order of magnitude diff in $\sigma \Rightarrow$ hints at **different** structure

Pure Y(3D) would give 15 [Guo et al., PLB 738 (2014), 172] $\frac{\sigma(e^+e^- \rightarrow \chi_{b1}(1P)\omega)}{\sigma(e^+e^- \rightarrow \chi_{b2}(1P)\omega)} = 1.3\pm0.6$ Slight tension with mixed 4S-3D state [Li et al., PRD 104 (2021) 034036]

Search for X_b

 X_{b} = bottomonium analogue of X(3872)

Existence predicted in both molecular and tetraquark models

- Molecule \Rightarrow M close to $B\overline{B}^*$ threshold
- Tetraquark \Rightarrow 10 < M < 11 GeV/c²

No χ_{b} near $B\overline{B}^{*}$ threshold \Rightarrow No $X_{b}^{?}$?

Strong UL on $\sigma \Rightarrow$ exclude tetraquark hypothesis

Negligible isospin breaking for X_b

 \Rightarrow **3** π mode enhanced wrt 2 π

Search for X_b

- Same Y(IS) $\pi^+\pi^-\pi^0 \gamma$ final state
- Search for resonances in $M(\Upsilon(1S)\omega)$
- Reflection from Y(10753) $\rightarrow \omega \chi_{b1}(1P)$
- No evidence for X_b signal

$\sqrt{s} \; (\text{GeV})$	M_{X_b} (GeV)	$\sigma_{X_b}^{UL}$ (pb)
10.653	10.59	0.55
10.701	10.45	0.84
10.745	10.45	0.14
10.805	10.53	0.47

Search for Y(10753) $\rightarrow \chi_{b0}(1P)\omega, \eta_{b}(1S)\omega$

Motivation

• Tetraquark model \Rightarrow strong enhancement for Y(10753) $\rightarrow \eta_{b}(1S)\omega$ (30x Y(2S) π + π -)

[CPC 43 (2019) 12, 123102]

 Observation of enhancement for ψ(4220)→χ_{c0}(1P)ω wrt ψ(4220)→χ_{c1,2}(1P)ω

[BESIII, PRD 99 (2019) 091103]

 $\chi_{b0}(1P)$ and $\eta_{b}(1S)$ don't have few body decays w/ high BF \Rightarrow **inclusive analysis**

Search for Y(10753) $\rightarrow \chi_{\rm b0}(1{\rm P})\omega,\,\eta_{\rm b}(1{\rm S})\omega$

Fit to $M_{recoil}(\pi^{+}\pi^{-}\pi^{0}) \Rightarrow$ no significant signal observed, 90% CL upper limits are set

Results do not support the tetraquark model in [CPC 43 (2019) 12, 123102]

$e^+e^- \rightarrow B\overline{B} + B\overline{B}^* + B^*\overline{B}^*$ cross sections

Motivation

- Investigate properties for all bottomonia near/above threshold
 - $\circ \Rightarrow$ Y(10753) partial widths
- First ingredients for **coupled channel analysis** of exclusive modes
- Add new scan points for R_b fits
- Part of broad program to measure exclusive cross sections

Tornqvist, PRL 53 (1984) 878

$e^+e^- \rightarrow B\overline{B} + B\overline{B}^* + B^*\overline{B}^*$ cross sections

Method

- FEI: fully reconstruct one B
- Identify signals with M_{bc}
- Combine with Belle measurement [JHEP 06, 137 (2021)]

$$M_{\rm bc} = \sqrt{(E_{\rm cm}/2)^2 - p_B^2}$$

RĀ

T(4S) ISR

5.35

M ... (GeV/c2)

Preliminary

B* B*

BB[∗]

$e^+e^- \rightarrow B\overline{B} + B\overline{B}^* + B^*\overline{B}^*$ cross sections

2-body cross sections fit with Chebychev polynomials

Steep rise of the B*B* cross section at threshold ⇒ hint at existence of bound state

Shown at Moriond QCD 2023 (See Michel Bertemes' <u>talk</u>) To appear on JHEP

Belle [Sci.Bull. 65 (2020) 23, 1983] Belle II new points

Belle II potential: high energy scan

Only 5 fb⁻¹ integrated by Belle at Υ (6S) (five points)

Small dataset compared to Υ (5S) (121.4 fb⁻¹)

With more data:

- Search for missing conventional bottomonia
 - spin-singlets in 3S, 3P, 1D multiplets
- Measure η and $\pi\pi$ transitions BFs
 - HQSS violation, molecular states
- If Z_b is a molecule, partners must appear
 - γ, **ρ** transitions
 - no predictions on W_b production rate
- Strange partners Z_{bs}?

◦ $e^+e^- \rightarrow Z_{bs} K \rightarrow K K (bb) (~11.2 GeV)$

Belle II potential: B decays

- High-statistics continuation from B-factories
- Competition from LHCb: advantages for modes with neutrals
 - Confirm Z_c states and search for neutral partners
 - Absolute branching ratios for $B \rightarrow X(3872,3915) K$
 - X(3872) width and lineshape measurement with $D^0\overline{D}^0\pi^0$

Belle II potential: other processes

ISR

0

Initial state radiation

Higher masses/channels 0 Z_{states} (e.g. $e+e- \rightarrow h_{\pi}\pi\pi$) Ο Double charmonium $e+e\rightarrow(ccbar)_{1=1}(ccbar)_{1=0}$ production rule Discovery of X(3940, 4160) 0 Expand to other new states Ο Two-photon J^{PC} of X(3915) Confirm $\phi J/\psi$ state? 0 D^(*)Dbar^(*)final states \bigcirc

Continuous mass range above 4.9 GeV/c^2

Events/10 MeV

3.9 3.95

W (GeV)

In conclusion

- The advent of B factories has led to a renaissance of hadron spectroscopy
- Belle II is one of the experimental pillars in the quarkonium sector
 - some production modes are **unique** to Belle II
- The recent **scan data** is starting to show interesting results

Stay tuned for many more to come!

Promising e+e- energy regions

Molecular states are naturally located (and produce the largest effects) near the corresponding threshold

Particles	Threshold, GeV/c^2		
$B^{(*)}\bar{B}^{**}$	11.00 - 11.07	- Within current SuperKEKB reach	
$B_{s}^{(*)}\bar{B}_{s}^{**}$	11.13 - 11.26	Within current SuperKEKD read	
$\Lambda_b \bar{\Lambda}_b$	11.24		
$B^{**}\bar{B}^{**}$	11.44 - 11.49		
$B_{s}^{**}\bar{B}_{s}^{**}$	11.48 - 11.68	Baryon-antibaryon molecules?	
$\Lambda_b \bar{\Lambda}_b^{**}$	11.53 - 11.54	Need to increase max E _{cm}	
$\Sigma_b^{(*)} \bar{\Sigma}_b^{(*)}$	11.62 - 11.67		
$\Lambda_b^{**} \bar{\Lambda}_b^{**}$	11.82 - 11.84		

Y(6S) results in Belle-I

Preliminary evidence for $\Upsilon(6S) \rightarrow \pi \pi h_b(nP)$, via $\pi Z_b^{\pm}(106XX)$ decay

Resonance structure of $\Upsilon(6S) \rightarrow \pi \pi \Upsilon(pS)$ decays not fully studied

5th Belle-II Italian Meeting

R.Mussa, Bottomonium Physics at Belle-II

Y(6S) results in Belle-I

Significance figures include syst errors

R.Mussa, Bottomonium Physics at Belle-II

Y(6S) prospects in Belle-II phase II

(Voloshin at B2TIP-2016)

• With current (limited) statistics at $\Upsilon(6S)$ (~ 11.00 GeV):

$$\frac{\Upsilon(nS)\pi\pi}{h_b(kP)\pi\pi}\Big|_{\Upsilon(6S)} \approx \left.\frac{\Upsilon(nS)\pi\pi|_{\mathrm{through}Z_b}}{h_b(kP)\pi\pi}\right|_{\Upsilon(5S)}$$

I.e. at $\Upsilon(6S)$ essentially no non-resonant background not associated with $Z_b^{(')}$, unlike at $\Upsilon(5S)$. (The HQSS 'forbidden' channels $h_b(kP)\pi\pi$ go exclusively through the $Z_b^{(')}$ within either peak.)

▶ 11006 MeV is the threshold for $B_1(5721)\overline{B}$. If the pair is produced near threshold, then a 'threshold triangle singularity' is possible with

 $Z_b(10610)$ [not the $Z_b(10650)$].

5th Belle-II Italian Meeting

R.Mussa, Bottomonium Physics at Belle-II

A. Boschetti – WIFAI 2023 – Spectroscopy at Belle II

QCD in a nutshell

QCD is the theory of quark and gluon interactions

- SU(3) symmetry
 - 8 gauge bosons, 3 charges

Asymptotic freedom

- weaker interaction at higher energies
- non-perturbative regime at low energies

Confinement

• quarks are always confined inside color neutral particles (hadrons)

QCD in a nutshell

QCD is the theory of quark and gluon interactions

- SU(3) symmetry
 - 8 gauge bosons, 3 charges

Perturbative QCD works very well

However

- not the regime in which matter is formed
- not the regime in which meson and baryon structures arise

Facing non-perturbative QCD

 α_{s} is not a good expansion parameter to study bound states

Facing non-perturbative QCD

 $\alpha_{\!_{\scriptscriptstyle S}}$ is not a good expansion parameter to study bound states

Solve QCD numerically (on the lattice)

Heavy and light hadrons

A. Boschetti – WIFAI 2023 – Spectroscopy at Belle II

Exotics: where we are

In 15 years we discovered

- ~ 30 exotics in charmonium
- 3 exotics in bottomonium
- 5 pentaquarks

Full Event Interpretation

Classifier value P_{tag} discriminates correctly reconstructed tag-sides from background

Determine the correctly reconstructed tag-side yield by fitting $\rm M_{\rm bc}$

- Reconstruct one B meson as tag-side (B_{tag}) hadronic or SL
- Study remaining B meson as signal (B_{sig})

Full Event Interpretation

Utilises O(200) decay channels with a classifiers trained for each

Reconstructs O(10000) unique decays chains in six stages

