Prospects for future experiments: physics reach and experimental challenges

European Research Council Established by the European Commission Nicola Neri Università di Milano and INFN Milano

Workshop Italiano sulla Fisica ad Alta Intensità Roma, 8-10 November 2023

Outline

- Physics motivations
- Physics reach
- Future flavour experiments and challenges
- Summary

Physics motivations

- No direct observations of new physics at LHC so far sets strong bounds on BSM models up to the TeV scale
- Measurements of CP violation in kaon, charm, beauty systems can probe much higher energy scales
- Deviations from SM predictions in CP violation measurements could indicate the energy scale where new physics can be found

3

Precision flavour physics

- Precise measurements of CKM parameters and CP violating asymmetries
- **Precise** SM predictions, small theoretical uncertainties
 - **clean** observables, e.g. CKM angle γ , leptonic decays, ...
 - **calculable** hadronic contributions at subpercent level: non-perturbative techniques, lattice QCD, e.g. V_{ub} , V_{cb} , Δm_s , Δm_d , ...
 - **null** tests: no theory inputs, negligible SM contributions, e.g. CP violation in D mixing, ...
- High statistics data sample
- Excellent detector performance, low systematic uncertainties

Present and future flavour experiments

LHCb: *B*, *D* physics. *pp* collisions at $\sqrt{s} \approx 14$ TeV. Single-arm forward spectrometer Plans for upgrade II and data taking until end HL-LHC, 2041 circa

• **Belle II**: *B*, *D*, τ physics. e^+e^- collisions at $\sqrt{s} \approx 10$ GeV energy. Hermetic detector. Coherent $B^0 - \overline{B}^0$ production, $\tau^+\tau^-$ pairs. Plans until 2035 and possibly beyond

- NA62/(HIKE): K physics. Collisions of 400 GeV protons on fixedtarget. Future projects under review
- **BESIT** , **BES III/(SCTF)**: *D* physics. e^+e^- collisions at $\sqrt{s} \approx 2 5$ GeV energy. Coherent $D^0 \overline{D}^0$ production (not covered in this talk)

FCC: e^+e^- collisions at $\sqrt{s} \approx 91-365$ in 2045 circa, pp collisions at $\sqrt{s} \approx 100$ TeV in 2070 circa (not covered in this talk)

Unitarity triangle fit

- **Present** constraints on $\overline{\rho}$, $\overline{\eta}$ with new theory (V_{ud} , LQCD) and experiment updates ($\sin 2\beta$, γ , α) $\overline{\rho} = 0.160 \pm 0.009$ (6%) $\overline{\eta} = 0.345 \pm 0.011$ (3%)
- Future constraints on ρ, η
 parameters using expected
 improvements from LHCb with
 300 fb⁻¹ and lattice QCD

 $\begin{aligned} \sigma(\overline{\rho}) &\approx 0.0016 \quad (1\%) \\ \sigma(\overline{\eta}) &\approx 0.0021 \quad (0.6\%) \end{aligned}$

CERN-LPCC-2018-06, arXiv:1812.07638

B physics at LHCb upgrade II

- ► With 300 fb⁻¹ at LHCb upgrade II LHCB-PUB-2018-009
 - $\sigma(\phi_s) \sim 4$ mrad from $B^0_s \to J/\psi \phi$ time-dependent measurement
 - $\sigma(\gamma) \sim 0.35^{\circ}$ from $B^{\pm} \rightarrow DK^{\pm}$ time-integrated measurement

Ultimate y sensitivity

- Sensitivity $\sigma(\gamma) \approx 1.6^{\circ}$ from combination of Belle II results with 50 ab⁻¹
- Measurements of γ from B⁺, B_d⁰, B_s⁰, Λ_b⁰ modes will become possible at LHCb upgrade II

B physics at Belle II

► With 50 fb⁻¹ at Belle II BELLE2-PAPER-2018-001

- $\sigma(V_{ub}) \sim 1~\%$ from $B \to \pi \ell \nu$ tagged and untagged decays
- $\sigma(S_f) \sim 0.015$ from $B^0 \rightarrow \eta' K^0$ time-dependent measurement

CP violation in charm at LHCb upgrade II

- Null test: SM amplitudes for mixing are approximately real and are GIM or CKM suppressed
- CP violation in mixing $q/p \neq 1, \phi \neq 0$ would represent a signature of new physics

- Sensitivities at 300 fb⁻¹: $\phi \approx 0.15^{\circ}$, $q/p \approx 0.002$
- Test SM predictions for indirect CPV at 10⁻⁴ level

CP violation in charm at Belle II

BELLE2-PAPER-2018-001

Observable	Phenomenological impact	Belle II 50 ab^{-1} (%)
$A_{CP}(D^0 \to \pi^0 \pi^0)$	SM test with A_{CP} sum rule I	± 0.09
$A_{CP}(D_s^+ \to K^+ \pi^0)$	SM test with A_{CP} sum rule II	
$A_{CP}(D^+ \to \pi^+ \pi^0)$	SM null test	± 0.17
$A_{CP}(D^0 \to K^0_S K^0_S)$	Possible near future observa-	± 0.23
	tion channel of CP violation	
$A_{CP}(D^0 o ho^0 \gamma)$		±2
$A_{CP}(D^0 \to \phi \gamma)$	Radiative decays as probes for new physics	± 1
$A_{CP}(D^0 \to \overline{K}^{*0}\gamma)$	1 2	± 0.3

 Measurements in final states with neutral particles for systematic tests of the SM

Kaon physics at HIKE

- $\mathscr{B}(\Lambda_L^{\circ} \to \pi^{\circ} t^{\circ} t^{\circ})$ at 20% in phase 2
- $\mathscr{B}(K_L^0 \to \pi^0 \nu \bar{\nu})$ at 20% precision in phase 3 (KLEVER)

LHCb data sample and plans

- Collected 9 fb⁻¹ in Run 1- Run 2
- Upgrade I: major detector upgrade in LS2 designed to collect 50 fb⁻¹ by the end of Run 4
- Upgrade II: major detector upgrade in LS4 to collect 300 fb⁻¹ by the end of HL-LHC

LHCb upgrade II challenges

- Aim at £=1.5×10³⁴ cm⁻²s⁻¹, about 42 visible interactions per crossing
- Tracking: 2000 charged particles/crossing, fluence in excess of 10¹⁶ 1MeV n_{eq}/cm²
 VErtex LOcator (VELO)

- PID: cope with high occupancy, upgrade the coverage at low ~10 GeV, and high momenta ~100 GeV
- ECAL: sustain radiation dose 100 Mrad, energy resolution σ(E)/ E~10%/√E⊕1%, reduce Moliere radius
- TDAQ: biggest data processing challenge in HEP history. Bandwidth >10 TB/s

LHCb Upgrade II detector

LHCb upgrade II detector

- Detectors with timing resolution of few tens of ps are key to reduce background and pile-up
 - VELO: hybrid-pixel, high resistivity silicon sensor + FEE chip (28 nm), 55 µm pitch, 50 ps time resolution

 ECAL:SpaCal (inner region, 1 MGy), Shashlik (outer region, 40 kGy), 15-50 ps time resolution

LHCb upgrade II detector

• Tracking: **UT**, 4 layers of MAPS. **Mighty Tracker**, 12 (u/v) layers of scintillator fibers (outer region) and 6 layers of MAPS (inner region), $\sigma(p)/p \approx 0.3 - 0.4\%$

 RICH with timing. SiPM/MaPMT/MCP. FastRICH ASIC in CMOS 65 nm with 25 ps resolution. 2.6 - 100 GeV/c range (time window ±2σ)

Muon: µ-RWELL to cope with hit rates of few MHz/cm² (inner region). Additional shielding with iron and concrete to reduce rates

Belle II plans for upgrade

Peak Luminosity [x10³⁵cm₋₂s⁻¹]

- Operations 2019-2022: int.
 lumi 427.8 fb⁻¹, peak lumi
 4.7×10³⁴ cm⁻² s⁻¹
- LS1 (2022-23): accelerator and detector upgrade (e.g. pixel detector, PMTs for PID, PCIe40)
- LS2 (2028-29): major accelerator upgrade (final focus, higher currents)
- Long term (2035 circa): accelerator R&D to reach 250 ab⁻¹, polarised beams

Belle II upgrade challenges

Detector performance challenges

- tracking at low momentum (e.g. 50-200 MeV/c slow pions from D^{*+})
- Vertex and IP resolution (background mitigation, time-dependent measurements)
- Calorimeter and lepton ID
- Triggers (high efficiency, rare and forbidden decays, au physics)
- K/π separation

- K_L^0 detection

Accelerator challenges

- reach peak lumi 6.5×10^{35} cm⁻² s⁻¹
- redesign of IR and final focus. Large uncertainties on background
- limit beam-beam effects, preserve beam lifetime, reduce emittance
- Internation Task Force in place

	XD	DC	Ο	Ω	CL	ΓM
Topic	\mathbf{S}	Ð	Ы	Ы	E	\mathbf{K}
$\mathcal{B}(B \to \tau \nu, B \to K^{(*)} \nu \bar{\nu})$	\checkmark			\checkmark	\checkmark	\checkmark
$\mathcal{B}(B \to X_u \ell \nu)$	\checkmark		\checkmark	\checkmark		\checkmark
$R, \text{Polarisation}(B \to D^{(*)} \tau \nu)$	\checkmark				\checkmark	
FEI	\checkmark	\checkmark		\checkmark		
$S_{ m CP}, C_{ m CP}(B ightarrow \pi^0 \pi^0, K_S^0 \pi^0)$	\checkmark	\checkmark			\checkmark	
$S_{\rm CP}, C_{\rm CP}(B \to \rho \gamma)$		\checkmark	\checkmark		\checkmark	
$S_{ m CP}, C_{ m CP}(B ightarrow J/\psi K_{ m S}^0, \eta' K_{ m S}^0)$	\checkmark	\checkmark				
Flavour tagger	\checkmark		\checkmark			
$ au ~ { m LFV}$		\checkmark			\checkmark	
Dark sector searches		\checkmark			\checkmark	\checkmark

Belle II detector upgrade in LS2

Leo Piilonen, Lepton Photon 2023

Plans for Belle II detector upgrades

 Improve detector robustness against backgrounds, radiation resistance, physics performance

J. Baudot, FPCP 2023

EOI	Upgrade ideas scope and technology	Time scale
DMAPS	Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from ALICE ITS developed for ATLAS ITK.	LS2
SOI-DUTIP	Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on SOI	LS2
Thin Strips	Thin and fine-pitch double-sided silicon strip detector system replacing the current SVD and potentially the inner part of the CDC	LS2
CDC	Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk	< LS2
ТОР	Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended lifetime ALD PMT, study of SiPM photosensor option	LS2 and later
ECL	Crystal replacement with pure CsI and APD; pre-shower; replace PIN-diodes with APD photosensors.	> LS2
KLM	Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF	LS2 and later
Trigger	Take advantage of electronics technology development. Increase bandwidth, open possibility of new trigger primitives	< LS2 and later
STOPGAP	Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger	> LS2
TPC	TPC option under study for longer term upgrade	> LS2

21

High Intensity Kaon Experiments

- Unique physics program complementary to LHC experiments
- Experimental apparatus changes over time in 3 phases and adapts to physics goals
- Timescale more than a decade

North Area of CERN Super Proton Synchrotron (SPS)

Phase	Protons on target/spill	K decays/year	Protons on TAX
Phase 1 (K^+)	1.2×10^{13}	2×10^{13}	-
Phase 2 (K_L +tracking)	2×10^{13}	3.8×10^{13}	-
Dump Mode	-	-	$(2-4) \times 10^{13}$
Phase 3 (K_L , KLEVER)	2×10^{13}	1.3×10^{13}	-

HIKE Phase 1 (K⁺)

- Follow the successful NA62 strategy: 75 GeV/c K^+ , 4x beam intensity to boost statistical sensitivity
- High-efficiency and high-precision tracking
- High-precision time measurements (20-40 ps) for track matching
- Hermetic veto system for photons and charged particles
- Excellent PID for π/μ discrimination

Hadronic

HIKE Phase 2 (K_L)

- Following the NA48 design for the neutral K_L^0 beam
- Detector challenges: 100 ps time resolution for π^0 of few GeV. R&D on calorimeters, innovative scintillators, longitudinal segmentation, oriented high-Z crystals

Mode	Assumed branching ratio	Acceptance	Signal yield in five years
$K_L \rightarrow \pi^0 e^+ e^-$	3.5×10^{-11}	2.1%	140
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	1.4×10^{-11}	6.0%	160
$K_L \rightarrow \mu^+ \mu^-$	7×10^{-9}	17%	2.3×10^{5}
$K_L o \mu^{\pm} e^{\mp}$	—	16%	—

HIKE Phase 3 (KLEVER)

- Neutral secondary beam at 8 mrad. Optimal fiducial volume to maximise sensitivity and minimise background $K_I^0 \to \pi^0 \pi^0, \Lambda \to n \pi^0$
- KLEVER beam line would need to add 150 m to reduce $\Lambda \rightarrow n\pi^0$ background
- Aim at signal yield 60 $K_L^0 \to \pi^0 \nu \bar{\nu}$ at SM BR with S/B = 1
- Phase 3 data taking possibly before LS5 (in 2038) for about 5 years running

The HIKE Detectors

Detector	Phase 1	Phase 2	Comment			Preliminary gr	oup interests	
Cherenkov K ⁺ tagger	upgraded	removed	faster photo-	-detectors		UK		
Beam tracker	replaced	removed	3D-trenched	silicon sensor		Italy,CERN,UK,	Belgium,Cana	da,France
Upstream veto detectors	replaced	kept	SciFi			Switzerland		
Large-angle vetos	replaced	kept	lead/scintilla	ator tiles		UK		
Downstream spectrometer	replaced	kept	STRAW (ultr	a-thin straws)		CERN,Kazakhs	tan,Slovakia,Cz	ech Republic
Pion identification (RICH)	upgraded	removed	faster photo	-detectors		Italy, Mexico		
Main EM calorimeter	replaced	kept	fine-samplin	g shashlyk		Italy		
Timing detector	upgraded	kept	higher granu	larity		Belgium		
Hadronic calorimeter	replaced	kept	high-granula	rity sampling		Germany		
Muon detector	upgraded	kept	higher granu	larity		Germany		
Small-angle calorimeters	replaced	kept	oriented high	n-Z crystals		Italy		
HASC	upgraded	kept	larger covera	age		Romania		
		2024	2025	2026	2027	2028	2029	2030
1) Detector studies								
2) Technical Design Report								
3) Detector prototyping								
4) Detector production								
5) Installation and commission	ing							
6) Start physics data-taking								

A. Romano, CERN seminar Nov 2023

• For KLEVER, additional VETO detectors for π^0 and a pre shower for π^0 direction need to be developed: shaslyk calorimeter, micro pattern gas detector (MPGD)

Further opportunities: CP violation via EDM

- Direct measurements of heavy baryon electric and magnetic dipole moments
- Λ baryon: spin precession induced by the LHCb magnetic field
- Λ⁺_c, Ξ⁺_c baryons: spin precession of channeled particles in bent crystals. A new fixed-target setup at LHC has been proposed
- Proof-of-principle test at LHC IR3 scheduled in 2025

Main challenges

- LHCb upgrade II: precise timing detectors (≤ 50 ps), radiation hardness (400 Mrad/year inner VELO), TDAQ (>10 TB/s), cost (175 MCHF), timeline (2041 end of HL-LHC)
- Belle II: accelerator upgrade (lumi 6.5 × 10³⁵ cm⁻²s⁻¹), low machine background, cost (≈90 MCHF), radiation hardness (10 Mrad/year inner VXD), low material budget
- HIKE: CERN approval, tracking at 3 GHz incoming beam particles, precise timing detectors (≤ 50 ps), calorimeter, straw trackers for high rates

Summary and prospects

- Precision flavour physics is a fundamental tool for discovery: great physics reach compared to direct and electroweak precision searches
- Theoretically clean processes and improvements in lattice-QCD motivate precise experimental measurements of flavour observables
- LHCb Upgrade II, Belle II, HIKE : are unique and complementary opportunities for fully exploiting the flavour physics potential at the high-intensity frontier
- Unique program for K, D, B and T physics on a timescale more than a decade: studies of CP violation, precision measurements of CKM parameters for an ultimate test of the SM

Prospects for future measurements at LHCb

Observable	Current LHCb	LHCb 2025	Upgrade II
EW Penguins			
$\overline{R_K \left(1 < q^2 < 6 { m GeV}^2 c^4 ight)}$	0.1 [5]	0.025	0.007
$R_{K^*} \ (1 < q^2 < 6 { m GeV}^2 c^4)$	0.1 [6]	0.031	0.008
R_{ϕ},R_{pK},R_{π}	-	0.08, 0.06, 0.18	0.02, 0.02, 0.05
CKM tests			
γ , with $B_s^0 ightarrow D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [7]	4°	1°
γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [8]	1.5°	0.35°
$\sin 2\beta$, with $B^0 \to J/\psi K_{ m S}^0$	0.04 [9]	0.011	0.003
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [10]	14 mrad	4 mrad
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [11]	35 mrad	9 mrad
$\phi_s^{sar{s}s}$, with $B_s^0 o \phi\phi$	154 mrad [12]	39 mrad	11 mrad
$a_{ m sl}^s$	33×10^{-4} [13]	$10 imes 10^{-4}$	$3 imes 10^{-4}$
$\left V_{ub} ight /\left V_{cb} ight $	6% [14]	3%	1%
$B^0_s, B^0 { ightarrow} \mu^+ \mu^-$			
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [15]	34%	10%
$\tau_{B^{0} \rightarrow \mu^{+} \mu^{-}}$	22% [15]	8%	2%
$S_{\mu\mu}^{D_s au \mu au \mu}$	_	_	0.2
$b \to c \ell^- \bar{\nu_l}$ LUV studies			
$\overline{R(D^*)}$	0.026 [16,17]	0.0072	0.002
$R(J/\psi)$	0.24 [18]	0.071	0.02
<u>Charm</u>			
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [19]	$1.7 imes 10^{-4}$	$3.0 imes 10^{-5}$
$A_{\Gamma} (pprox x \sin \phi)$	2.8×10^{-4} [20]	$4.3 imes 10^{-5}$	$1.0 imes 10^{-5}$
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [21]	$3.2 imes 10^{-4}$	$8.0 imes 10^{-5}$
$x \sin \phi$ from multibody decays	_	$(K3\pi) 4.0 \times 10^{-5}$	$(K3\pi) 8.0 \times 10^{-6}$

Unitarity triangle fit

CKM fits

In figure: constraints on $\overline{\rho}, \overline{\eta}$ parameters using only LHCb and lattice QCD expected improvements with 300 fb⁻¹

In figure: constraints on $\overline{\rho}, \overline{\eta}$ parameters using only LHCb and lattice QCD expected improvements with 300 fb⁻¹

EDM limits

 Summary of current EDM limits and future planned sensitivities

