Overview of *CP* violation in charm-hadron decays

Federico Betti

Workshop Italiano sulla Fisica ad Alta Intensità 2023

Roma - 08 November 2023

- Experimental techniques to study CPV in charm
- Latest results
- Future prospects

Federico Betti - University of Edinburgh

WIFAI 2023 - 08/11/2023

2

CP violation in charm

$$A_{CP}(D \to f) = \frac{\Gamma(D \to f) - \Gamma(D \to f)}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$
$$|A_f|^2 \neq |\overline{A}_{\overline{f}}|^2 \qquad \qquad i\frac{d}{dt} \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix} = \left(M - \frac{i}{2}\Gamma\right) \begin{pmatrix} D \\ \overline{D} \\$$

- Direct *CP* violation when
- For oscillating neutral mesons, mass eigenstates $|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D}^0\rangle$
 - *CP* violation in mixing when $|q/p| \neq 1$
 - *CP* violation in decay-mixing interference when $\phi_f \equiv \arg[(q\overline{A}_f)/(pA_f)] \neq 0$

Phenomenological parametrisation

$$x \equiv \frac{2(m_1 - m_2)}{\Gamma_1 + \Gamma_2}, \quad y \equiv \frac{\Gamma_2 - \Gamma_1}{\Gamma_1 + \Gamma_2}, \quad \left|\frac{q}{p}\right| - 1$$

 $x^2 - y^2 =$

$$\left|\frac{q}{p}\right|^{\pm 2} \left(x^2 + y^2\right) =$$

Federico Betti - University of Edinburgh

Theoretical parametrisation

$$x_{12} \equiv \frac{2|M_{12}|}{\Gamma_1 + \Gamma_2}, \quad y_{12} \equiv \frac{|\Gamma_{12}|}{\Gamma_1 + \Gamma_2}, \quad \phi_{12} \equiv \arg\left(\frac{M_1}{\Gamma_1}\right)$$

$$x_{12}^2 - y_{12}^2,$$

 $xy = x_{12}y_{12}\cos\phi_{12},$

PRL 103 (2009) 071602 PRD 80 (2009) 076008 PRD 103 (2021) 053008

 $x_{12}^2 + y_{12}^2 \pm 2x_{12}y_{12}\sin\phi_{12}$

CP violation in charm

- Due to smallness of involved CKM elements and GIM mechanism, $C\!P$ violation in charm decays predicted to be small: $A_{C\!P} \sim 10^{-4} 10^{-3}$
- SM predictions difficult to calculate because of nonperturbative QCD effects
- First observation by LHCb in 2019:

 $\Delta A_{CP} = A_{CP}(D^0 \to K^- K^+) - A_{CP}(D^0$

• Further measurements and theoretical improvements are needed to understand if measured ΔA_{CP} is consistent with SM or is affected by new physics

$$(-15.4 \pm 2.9) \times 10^{-4}$$
_{PRL 122 (2019}

Experimental techniques

Charming experiments

B factories:

- high efficiency
- clean environment and good reconstruction of neutrals

Federico Betti - University of Edinburgh

Detectors at hadron machines:

- huge cross section
- need dedicated trigger

D⁰ flavour tag

- Look at the charge of the accompanying particle in the decay
 - prompt tag: $D^{*\pm} \to D^0 \pi^{\pm}$ semileptonic tag: $B \to D^0 \mu^{\pm} X$

• New Charm Flavour Tagger in Belle II:

- based on BDT
- $\epsilon_{\text{tag}}^{\text{eff}} = (47.91 \pm 0.07 \pm 0.51)\%$
- double size with respect to D^{*+} -tagged events

Nuisance asymmetries

$$A_{\rm raw}(D^{*+} \rightarrow D^0(\rightarrow h^-h^+)\pi^+) \simeq$$

- Production asymmetry of D^{*+} in pp collisions (LHCb) • Forward-backward asymmetry in $e^+e^- \rightarrow c\overline{c}$ due to $\gamma - Z^0$ interference and higher-order QED effects (Belle/ Belle II)
- Nuisance asymmetries usually canceled with Cabibbo-favoured (no direct CPV) control modes which share common asymmetries
- Cancellation good if kinematics match between signal and control modes \rightarrow kinematic weighting is needed \rightarrow reduction of effective statistical power

Federico Betti - University of Edinburgh

Time-dependent *CP* asymmetries

- Consisting in measuring asymmetry or yield ratio in bins of decay time
- Less affected by nuisance (detection, production) asymmetries than time-integrated measurements
- Selection induces correlations between kinematics and decay time, potentially dangerous for time-dependent analyses ⇒ corrections or dedicated trigger lines are needed

CPV in multibody decays

- Multibody decays: local CP asymmetries possibly larger than integrated ones
- Local CPV can be searched with:
 - amplitude analyses \rightarrow allows theorists to understand CPV per contributing amplitude, but model building is not easy
 - model-independent searches: statistical tests which provide yes/no response, but no information on internal dynamic of the decay

 S_{CP} ("Miranda") method: χ^2 test to compare binned Dalitz distributions of $N^i(D^+_{(s)})$ and $N^{i}(D^{-}_{(s)})$ (yields obtained by mass fit in each bin)

$$S_{CP}^{i} = \frac{N^{i}(D_{(s)}^{+}) - \alpha N^{i}(D_{(s)}^{-})}{\sqrt{\alpha \left(\delta_{N^{i}(D_{(s)}^{+})}^{2} + \delta_{N^{i}(D_{(s)}^{-})}^{2}\right)}}, \quad \alpha = \frac{\sum_{i} N^{i}(D_{(s)}^{+})}{\sum_{i} N^{i}(D_{(s)}^{-})}, \quad \chi^{2} = \sum_{i} \left(S_{CP}^{i}\right)^{2}$$

Federico Betti - University of Edinburgh

- Energy test:
- unbinned method providing *p*-value
- it compares test statistics T observed in data with a distribution obtained from permutation samples (random flavour)
- T based on distance in phase space between candidates

$$T \equiv \frac{1}{2n(n-1)} \sum_{i,j\neq i}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i,j\neq i}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i,j}^{n,\overline{n}} \psi_{ij}$$

WIFAI 2023 - 08/11/2023

10

CPV in multibody decays

- decays using the triple product C_T and asymmetries A_T , a_{CP}^{T-odd} $C_T = (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$ $A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)} \quad \overline{A}_T = \frac{\Gamma(-\overline{C}_T > 0) - \overline{C}_T}{\Gamma(-\overline{C}_T > 0) + \overline{C}_T}$ $a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T - \overline{A}_T)$
- a_{CP}^{T-odd} unaffected by production and detection asymmetries and FSI effects
- In some cases $a_{C\!P}^{T-\mathrm{odd}} \propto \sin \phi_w \cos \delta_s$, while $A_{CP} \propto \sin \phi_{w} \sin \delta_{s} \Rightarrow$ complementarity

• Model-independent search by measuring T-odd correlations in four-body

$$-\Gamma(-\overline{C}_T < 0)$$
$$-\Gamma(-\overline{C}_T < 0)$$

Latest results

 $A_{\mathcal{O}}(D^0 \to K^- K^+)$

 $A_{CP}(K^-K^+) | D^+ = (13.6 \pm 8.8 \pm 1.6) \times 10^{-4}$ $\rho_{\rm stat} = 0.05$ $A_{CP}(K^-K^+) | D_s^+ = (2.8 \pm 6.7 \pm 2.0) \times 10^{-4}$ $\rho_{\rm syst} = 0.28$

PRL 131 (2023) 091802

By combining all LHCb measurements of $A_{CP}(K^-K^+), \Delta A_{CP}, \Delta Y \text{ and } \frac{\langle t \rangle_{h^-h^+}}{\langle t \rangle_{h^-h^+}}$ using $A_{CP}(h^-h^+) = a_{h^-h^+}^d + \frac{\langle t \rangle_{h^-h^+}}{-}\Delta Y$ τ_{D0}

$$a_{KK}^{d} = (7.7 \pm 5)^{d}$$
$$a_{\pi\pi}^{d} = (23.2 \pm 6)^{d}$$
$$\rho(a_{KK}^{d}, a_{\pi\pi}^{d}) = (23.2 \pm 6)^{d}$$

Federico Betti - University of Edinburgh

- $5.7) \times 10^{-4}$ $6.1) \times 10^{-4}$ 0.88
- Evidence of direct *CP* violation in $D^0 \rightarrow \pi^- \pi^+$ at 3.8 σ level
- Exceeds at 2σ level SM expectations of U-spin symmetry breaking

Search for local *CP* violation in $D^+_{(S)} \rightarrow K^-K^+K^+$

- $D_{c}^{+} \rightarrow K^{-}K^{+}K^{+}$: Singly Cabibbo-suppressed \rightarrow might show *CP* violation
- $D^+ \rightarrow K^- K^+ K^+$: Doubly Cabibbo-suppressed \rightarrow no *CP* violation in SM
- Search with S_{CP} method
- phase)
- Control samples: Cabibbo-favoured $D^+ \to K^- \pi^+ \pi^+$ and $D_s^+ \to K^- K^+ \pi^+$
- D_s^+ mode: *p*-value = 13.3%
- D^+ mode: *p*-value = 31.6%

 \Rightarrow no local *CP* violation observed

JHEP 07 (2023) 067

Dalitz plot divided in 21 bins that reproduce the pattern of the main resonances (\simeq constant strong

Search for local *CP* violation in $D^0 \rightarrow \pi^- \pi^+ \pi^0$

- Singly Cabibbo-suppressed decay
- 3% *p*-value for *CP*-symmetry hypothesis in Run **1** measurement <u>PLB 740 (2015) 158</u>
- Dominated by ρ resonances
- Search with energy test
- Method validated with $D^0 \rightarrow K^- \pi^+ \pi^0$ control sample
- *p*-value = 62%

Search for local *CP* violation in $D^0 \rightarrow K_s^0 K^{\pm} \pi^{\mp}$

- Singly Cabibbo-suppressed decay
- Model-dependent study already performed with Run 1 measurement PRD 93 (2016) 052018
- Search with energy test
- Method validated with $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ and $D^0 \rightarrow K_c^0 \pi^+ \pi^-$ control samples
- *p*-values = 70% ($K_s^0 K^- \pi^+$) and 66% $(K_{s}^{0}K^{+}\pi^{-})$

Mixing and CPV with $D^0 \rightarrow K_c^0 \pi^+ \pi^-$

- $D^0 \to K_s^0 \pi^+ \pi^-$ is particularly sensitive to x
- Analysis performed with model-independent *bin-flip* method, which does not require accurate modelling of the efficiency
- Prompt tag: led to observation of $x \neq 0$
- Semileptonic tag: allows to probe the low decay-time region

PRL 127 (2021) 111801 Federico Betti - University of Edinburgh

Latest determination of $y_{CP} - y_{CP}^{K\pi}$ four times Precision on ΔY world average improved by nearly a factor 2 more precise than previous world average PRD 104 (2021) 072010

Federico Betti - University of Edinburgh

WIFAI 2023 - 08/11/2023

18

 $\mathbf{CPV} \text{ in } D^0 \to K^0_{\mathrm{s}} K^0_{\mathrm{s}} \pi^+ \pi^-$

• First measurements of A_{CP} and a_{CP}^{T-odd} for this decay:

Full Belle data sample (922 fb^{-1})

$$A_{CP} = (-2.51 \pm 1.4)$$

 $a_{CP}^{T-odd} = (-1.95 \pm 1.4)$

- For A_{CP} : Detection asymmetry corrected with untagged $D^0 \rightarrow K^- \pi^+$ decays $\Rightarrow A_{FB}$ corrected by averaging A_{raw} over D^* polar angle
- Most precise determination of branching fraction up to date

 $44^{+0.11}_{-0.10})\%$ $1.42^{+0.14}_{-0.12})\%$

PRD 107 (2023) 052001

T-odd correlations in D^+ and D_s^+ four-body decays

- A_T and a_{CP}^{T-odd} obtained by simultaneous fit to subsamples divided by D flavour and C_T charge
- First or most precise determinations of these quantities
- a_{CP}^{T-odd} measured also in subregions of phase space

Full Belle data sample (980 fb^{-1})

D⁰→K_sπ⁺π⁻π⁰ (CF) (-0.28±1.38^{+0.23}_{-0.76})×10⁻³ $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ (SCS) $D^0 \rightarrow K_s K_s \pi^+ \pi^- (SCS)$ (-1.95±1.42^{+0.14}_{-0.12})% $D^+ \rightarrow K_s K^+ K^- \pi^+ (CF)$ (-3.34±2.68)% [Belle] $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$ (CF) (0.2±1.5±0.8)×10⁻³ [Belle] $D^+ \rightarrow K_S K^+ \pi^+ \pi^- (SCS)$ (-2.7±7.1)×10⁻³ [FOCUS/ BaBar/ Belle] $D^+ \rightarrow K^- K^+ \pi^+ \pi^0$ (SCS) (2.6±6.6±1.3)×10⁻³ [Belle] $D^+ \rightarrow \underline{K^+\pi^-\pi^+\pi^0}$ (DCS) (-1.3±4.2±0.1)% $D_s^+ \rightarrow K_s K^+ \pi^+ \pi^- (CF)$ (-8.2±5.2)×10⁻³ [FOCUS/ BaBar/ Belle] $D_s^+ \rightarrow K^+ K^- \pi^+ \pi^0$ (CF) (2.2±3.3±4.3)×10⁻³ [Belle] $D_s^+ \rightarrow K^+ \pi^- \pi^+ \pi^0$ (SCS) (-1.1±2.2±0.1)% [Belle] -0.02 -0.06 -0.040.02 0.04 a^{T-odd} arXiv:2305.11405 arXiv:2305.12806

CPV in Λ_c decays

- First measurement of direct and α -induced CPasymmetry in singly Cabibbo-suppressed Λ_c decays:
 - $A_{CP}(\Lambda_c^+ \to \Lambda K^+) = 0.021 \pm 0.026 \pm 0.001$ $A_{CP}(\Lambda_c^+ \to \Sigma^0 K^+) = 0.025 \pm 0.054 \pm 0.004$ $A_{CP}^{\alpha}(\Lambda_{c}^{+} \to \Lambda K^{+}) = -0.023 \pm 0.086 \pm 0.071$ $A_{CP}^{\alpha}(\Lambda_{c}^{+} \to \Sigma^{0}K^{+}) = 0.08 \pm 0.35 \pm 0.14 \qquad A_{CP}^{\alpha} = \frac{\alpha_{\Lambda_{c}^{+}} + \alpha_{\overline{\Lambda_{c}^{-}}}}{\alpha_{\Lambda_{c}^{+}} - \alpha_{\overline{\Lambda_{c}^{-}}}}, \alpha = \frac{2\Re(S^{*}P)}{|S|^{2} + |P|^{2}} \ge 10^{3}$
- Detection asymmetries corrected with Cabibbofavoured D and Λ_c^+ decays
- Method to measure A_{CP}^{α} promising for future studies of other hyperons

Future prospects

Future direct CPV with LHCb

- The LHCb Upgrade I will reduce σ_{stat} by a factor 3
 - higher integrated luminosity
 - \blacktriangleright removal of hardware trigger \rightarrow higher trigger efficiency, smaller detection asymmetries
- After Run 5 (Upgrade II) precisions expected to increase by an order of magnitude

Federico Betti - University of Edinburgh

$$D^0 \rightarrow h^+ h^-$$

Tag	Yield	Yield	$\sigma(\Delta A_{CP})$	$\sigma(A_C)$
	$D^0 \rightarrow K^- K^+$	$D^0 \rightarrow \pi^- \pi^+$	[%]	[9
ompt	52M	17M	0.03	0.
ompt	280M	94M	0.013	0.
ompt	$1\mathrm{G}$	305M	0.01	0.
ompt	4.9G	1.6G	0.003	0.0

Future time-dependent CPV with LHCb

- The LHCb Upgrade I will reduce σ_{stat} by a factor 3
 - higher integrated luminosity
 - removal of hardware trigger \rightarrow higher trigger efficiency, smaller detection asymmetries
- After Run 5 (Upgrade II) precisions expected to increase by an order of magnitude

 $D^0 \rightarrow h^+ h^-$

LHCB-PUB-2018-009

 Yield $\pi^+\pi^ \sigma(A_{\Gamma})$

 18M
 0.024\%
 Yield $K^+K^ \operatorname{Tag}$ $\sigma(A_\Gamma)$ Sample (\mathcal{L}) $Run 1-2 (9 \text{ fb}^{-1}) Prompt = 60M$ 0.013% Run 1–3 (23 fb⁻¹) 92M0.0104~%Prompt 310M0.0056%Run 1–4 (50 fb⁻¹) 0.0065~%0.0035%Prompt 793M236MRun 1–5 (300 fb⁻¹) 0.0025 % Prompt 5.3G0.0014%1.6G

Federico Betti - University of Edinburgh

			Sample (lumi \mathcal{L})	Tag	Yield	$\sigma(x)$	$\sigma(y)$	$\sigma(q/p)$
Γ	$)^0 \rightarrow K$	$r_{\pi^+\pi^-}$	$P_{uv} = 1 \cdot 2 (0 \text{ fb} - 1)$	\mathbf{SL}	10M	0.07%	0.05%	0.07
		S	$\operatorname{Rull} 1=2(910)$	Prompt	36M	0.05%	0.05%	0.04
		8-000	$P_{uv} = 1 + 2 (92 \text{ fb} - 1)$	\mathbf{SL}	33M	0.036%	0.030%	0.036
		<u>5-003</u>	Rull 1–3 (23 10)	Prompt	200M	0.020%	0.020%	0.017
<u>,</u>)	Yield $\pi^+\pi^-$	$\sigma(A_{\Gamma})$	$P_{\rm mm} = 1 + (50 {\rm fb} - 1)$	SL	78M	0.024%	0.019%	0.024
5% 5%	18M 02M	0.024%	$\operatorname{Kun} 1-4 (50 \text{ fb}^{-1})$	Prompt	520M	0.012%	0.013%	0.011
5%	236M	0.0104 % 0.0065 %	$D_{1} = 1 F (200 ft - 1)$	SL	490M	0.009%	0.008%	0.009
4%	$1.6\mathrm{G}$	0.0025~%	$\operatorname{Kun} 1-5 (300 \text{ fb}^{-1})$	Prompt	3500M	0.005%	0.005%	0.004

WIFAI 2023 - 08/11/2023

24

Future direct CPV with Belle II

- General improvement by one order of magnitude, and $\sigma < 10^{-3}$ for most of the measurements
- $\sigma(A_{CP}(D^0 \to K^+K^-))$ will have the same magnitude as LHCb 23 fb⁻¹
- $\sigma(\Delta A_{CP})$ will be in the same ballpark as the current one
- Belle II will dominate the knowledge of decays involving neutrals
- Disclaimer: improvements in reconstruction wrt Belle not taken into account here, including new CFT

PTEP 12 (2019) 123C01

Mode $D^0 \rightarrow K^+ K^ D^0
ightarrow \pi^+\pi^ D^0 \rightarrow \pi^0 \pi^0$ $D^0 \rightarrow K^0_{\rm S} \pi^0$ $D^0 \rightarrow K_{\rm S}^{0} K_{\rm S}^0$ $D^0 \to K^0_{\rm S} \eta$ $D^0 \rightarrow K^0_{\rm S} \eta'$ $D^0
ightarrow \pi^+\pi^- \pi^ D^0 \rightarrow K^+ \pi^ D^0 \rightarrow K^+ \pi^ D^+
ightarrow \phi \pi^+$ $D^+ \rightarrow \pi^+ \pi^0$ $D^+ \rightarrow \eta \pi^+$ $D^+ \rightarrow \eta' \pi^+$ $D^+ \rightarrow K_{\rm S}^0 \pi^+$ $D^+ \rightarrow K^0_{\rm S} K^+$ $D_s^+ \rightarrow K_{
m S}^0 \pi^+$

 $\frac{D_s^+ \to K_S^0 K^+}{}$

Federico Betti - University of Edinburgh

	\mathcal{L} (fb ⁻¹)	$A_{ m CP}~(\%)$ (Belle existing measurement)	Belle II
	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03
	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09
	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.02
	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.23
	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
π^0	532	$+0.43 \pm 1.30$	± 0.13
π^0	281	-0.60 ± 5.30	± 0.40
$\pi^+\pi^-$	281	-1.80 ± 4.40	± 0.33
	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04
	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17
	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.02
-	977	$-0.25\ \pm 0.28\ \pm 0.14$	± 0.04
	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29
-	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05

Future time-dependent CPV with Belle I

- Improvement by a factor 6-7
- Knowledge of binned strong phases expected to be improved by BESIII \rightarrow systematic uncertainty will be reduced
- including new CFT and better time resolution

• Disclaimer: improvements in reconstruction wrt Belle not taken into account here,

Stat.	Syst.		Total	Stat.	Sy	vst.
	Red.	Irred.	-		Red.	Irred.
	σ_x	(10^{-2})			σ_y (1	10 ⁻²)
0.19	0.06	0.11	0.20	0.15	0.06	0.04
0.08	0.03	0.11	0.14	0.06	0.03	0.04
0.03	0.01	0.11	0.11	0.02	0.01	0.04
	q/p	$ (10^{-2}) $			ϕ	(°)
15.5	5.2-5.6	7.0–6.7	17.8	10.7	4.4-4.5	3.8-3.7
6.9	2.3 - 2.5	7.0–6.7	9.9–10.1	4.7	1.9–2.0	3.8-3.7
2.2	0.7 - 0.8	7.0–6.7	7.0–7.4	1.5	0.6	3.8–3.7

WIFAI 2023 - 08/11/2023

0.16

0.08

0.05

First Run 3 LHCb charm mass peaks

Federico Betti - University of Edinburgh

LHCB-FIGURE-2023-011

27

New HIt1 K_s^0 lines in LHCb

- New dedicated selection for single and $di-K_s^0$
- Expected 2.6x improvement on efficiency on $D^0 \to K^0_s K^0_s$
- Important step to get to $\sigma(A_{CP}) \sim 10^{-3}$

Federico Betti - University of Edinburgh

Future challenges

- In these measurements, systematics scattering where $\sigma_{\rm stat} \sim \sigma_{\rm syst}$
- Nuisance asymmetries currently corrected for with Cabibbo-favoured decays → kinematic weighting applied → systematic associated
 ⇒ should we start measuring A_P and A_D (or even absolute efficiencies) separately?
- Measurements with $\pi^0 (D^+ \to \pi^+ \pi^0, D^+ \to \pi^0 \pi^0, ...)$ challenging at LHCb \to we should work hard to improve the π^0 reconstruction, especially in future upgrades
- Multibody decays: crucial to choose powerful, interpretable observables: robust experimentally, impactful theoretically → synergy with theory community is needed!
- QCD strongly affects SM calculations → what can we do to help theory community in improving their predictions?

• In these measurements, systematics scale with statistics, but we will reach a point

Conclusions

- been performed in *D* decays
- First evidence of $a^d_{CP}(D^0 \to \pi^- \pi^+) \neq 0$
- Mixing and CPV-in-mixing parameters measured with impressive precision in D^0 system
- New searches for CPV in four-body decays
- Future measurements with LHCb Upgrades and Belle II will further increase knowledge of CPV in charm and clarify the global picture

• After discovery of CPV in D^0 decays, many other CP measurements have

Charm at LHCb

- Large $c\overline{c}$ production cross section $\sigma(pp \to c\bar{c}X)_{\sqrt{s=13 \text{ TeV}}} = (2369 \pm 3 \pm 152 \pm 118) \ \mu b$
- More than 1 billion $D^0 \to K^- \pi^+$ decays reconstructed with the full LHCb data sample
- Two ways to tag the D^0
 - Prompt tag: look at π charge in $D^{*\pm} \rightarrow D^0 \pi^{\pm} \Rightarrow$ higher statistics
 - Semileptonic tag: look at μ charge in $\overline{B} \to D^0 \mu^- \overline{\nu}_{\mu} X \Rightarrow$ access lower decay time
- Time-dependent analyses are less affected by experimental (detection, production) asymmetries than time-integrated measurements
- Selection induces correlations between kinematics and decay time, potentially dangerous for time-dependent analyses \Rightarrow corrections or dedicated trigger lines are needed

JHEP 05 (2017) 074 $\sigma(pp \to D^0 X) = 2072 \pm 2 \pm 124 \, \mu b$ $\sigma(pp \to D^+X) = 834 \pm 2 \pm 78 \,\mu b$ $\sigma(pp \rightarrow D_s^+ X) = 353 \pm 9 \pm 76 \,\mu b$ $\sigma(pp \to D^{*+}X) = 784 \pm 4 \pm 87\,\mu b$

 $\Delta Y_f \operatorname{in} D^0 \to K^+ K^- \operatorname{and} D^0 \to \pi^+ \pi^-$

 $A_{CP}(D^0 \to f, t) = a_f^d(D^0 \to f) + \Delta Y_f \frac{t}{\tau_{D^0}}$

$$\Delta Y_f \simeq -x_{12} \sin \phi_f^{1}$$

- $\Delta Y_{K+K-} = \Delta Y_{\pi^+\pi^-} = \Delta Y$ at current level of precision
- SM expectation $\sim 2 \times 10^{-5}$ PRD 103 (2021) 053008 PLB 810 (2020) 135802
- Strategy: measure asymmetry in bins of D^0 decay time and measure the linear slope
- Selection induces correlations between kinematics and decay time
 possible timedependent nuisance asymmetries are removed by equalising D^0 and \overline{D}^0 kinematics

• $D^0 \rightarrow K^- \pi^+$ is used as a control sample ($\Delta Y_{K^- \pi^+} < 3 \times 10^{-5}$ from experimental results)

Federico Betti - University of Edinburgh

 $f_{f}^{M} + y_{12}a_{f}^{d} \simeq -x_{12}\sin\phi_{12}$

Neglecting *CP* violation in the decay

PRD 104 (2021) 072010

$$\phi_f^M \equiv \arg\left(\frac{M_{12}A_f}{\overline{A}_f}\right) \simeq \phi_{12}$$

Superweak approximation

 $\Delta Y_f \text{ in } D^0 \to K^+ K^- \text{ and } D^0 \to \pi^+ \pi^-$

Federico Betti - University of Edinburgh

PRD 104 (2021) 072010

- y_{CP}^{J} parameterises the difference between the effective decay width of $D^0 \rightarrow f \ (f = K^- K^+, \pi^- \pi^+) \text{ and } \Gamma$
- $D^0 \to K^- \pi^+$ effective width is used as a proxy for Γ , but $y_{CP}^{K\pi}$ must be taken into account

105 (2022) 092013

$y_{CP}^{f} = \frac{\hat{\Gamma}(D^{0} \to f) + \hat{\Gamma}(\overline{D}^{0} \to f)}{2\Gamma} - 1$

 $\frac{\mathbf{O} \quad \hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\overline{D}{}^0 \to f)}{\hat{\Gamma}(D^0 \to K^- \pi^+) + \hat{\Gamma}(\overline{D}{}^0 \to K^- \pi^+)} - 1 \simeq y_{CP}^f - y_{CP}^{K\pi}$

$$\sqrt{R_D} = \sqrt{\frac{\mathscr{B}(D^0 \to K^+ \pi^-)}{\mathscr{B}(D^0 \to K^- \pi^+)}} \simeq 6\%$$

Experimentally: measure yield ratio as a function of decay time

$$R^{f}(t) = \frac{N(D^{0} \to f, t)}{N(D^{0} \to K^{-}\pi^{+}, t)} \propto e^{-(y_{CP}^{f} - y_{CP}^{K\pi})t/\tau_{D^{0}}} \frac{\varepsilon(f, t)}{\varepsilon(K^{-}\pi^{+}, t)}$$

- Selection efficiency equalised with a novel data-driven kinematic weighting procedure
- Run 2 data sample, D^0 tagged by prompt decays

PRD 105 (2022) 092013

• Analysis procedure validated on simulation and by checking that $y_{CP}^{CC} = 0$ in the measurement $R^{CC}(t) = \frac{N(D^0 \to \pi^- \pi^+, t)}{N(D^0 \to K^- K^+, t)} \propto e^{-y_{CP}^{CC} t/\tau_{D^0}} \frac{\varepsilon(\pi^- \pi^+, t)}{\varepsilon(K^- K^+, t)}$

PRD 105 (2022) 092013

$y_{CP}^{KK} - y_{CP}^{K\pi} = (7.08 \pm 0.30 \pm 0.14) \times 10^{-3}$

$y_{CP}^{CC} = (0.15 \pm 0.36) \times 10^{-3}$ \rightarrow compatible with 0

 $y_{CP}^{\pi\pi} - y_{CP}^{K\pi} = (6.57 \pm 0.53 \pm 0.16) \times 10^{-3}$

Federico Betti - University of Edinburgh

WIFAI 2023 - 08/11/2023

37

Mixing and CPV with $D^0 \rightarrow K_s^0 \pi^+ \pi^-$

- $D^0 \to K_s^0 \pi^+ \pi^-$ is particularly sensitive to χ
- PRD 99 (2019) 012007 Analysis performed with model-independent bin-flip method, which does not require accurate modelling of the efficiency
- Prompt tag: led to observation of $x \neq 0$ PRL 127 (2021) 111801
- Semileptonic tag: allows to probe the low decay-time region (most recent with Run 2 data reported here)

Mixing and CPV with $D^0 \rightarrow K_c^0 \pi^+ \pi^-$

- Measure, as a function of the D^0 decay time, the yield ratios between symmetric bins in the Dalitz plot $(m_+^2, m_-^2) \rightarrow$ they can be written as a function of x_{CP} , y_{CP} , Δx and Δy
- Signal selection induces correlation between decay time and phase-space that could bias the measurement = a data-driven correction is applied to make the decay-time acceptance uniform in the phase space

$$x_{CP} = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$
$$\Delta x = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$
$$y_{CP} = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$
$$\Delta y = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$

Federico Betti - University of Edinburgh

Almost constant strong-phase PRD 82 (2010) 112006 difference in each Dalitz bin PRD 101 (2020) 112002 external inputs from CLEO and BESIII

γ + charm combination

LHCb-CONF-2022-003

- Measurement in beauty sector help to constraint y and hadronic decay parameters of $D^0 \rightarrow K^- \pi^+ \Rightarrow$ common γ + charm mixing/CPV by LHCb since 2021
- All previously mentioned measurements are included in the latest combination

See <u>talk</u> by Innes

Quantity	V_{2}	68.3	3% CL	95.4	$\% \mathrm{CL}$
Quality	value	Uncertainty	Interval	Uncertainty	Interval
x[%]	0.398 0.636	$+0.050 \\ -0.049 \\ +0.020$	[0.349, 0.448] [0.617, 0.656]	$+0.099 \\ -0.10 \\ +0.041$	[0.30, 0.497] [0.597, 0.677]
$\left q/p \right $	0.030	$-0.019 \\ +0.015 \\ -0.016 \\ +1.2$	[0.017, 0.000] [0.979, 1.010]	$-0.039 \\ +0.032 \\ -0.032 \\ +2.4$	[0.963, 1.027]
$\phi[\circ]$	-2.5	-1.2	[-3.7, -1.3]	-2.5	[-5.0, -0.1]

Federico Betti - University of Edinburgh

Frequentist approach 173 observables 52 parameters

γ + charm combination

B decay	D decay	Ref.	Dataset	Status since			68	3.3% CL	95.4	4% (
				Ref. [14]	Quantity	Value	Uncertainty	Interval	Uncertainty	
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	[29]	Run 1&2	As before	$\gamma^{[\circ]}$	63.8	+3.5	[60.1, 67.3]	+6.9	[[
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[30]	Run 1	As before	$r_{P+}^{DK\pm}$	0.0972	+0.0022	[0.0951, 0.0994]	+0.0045	[0.0]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[18]	Run 1&2	New	$\delta_{P^{\pm}}^{DK^{\pm}}[\circ]$	127.3	+3.4	[123.8, 130.7]	+6.5	[1:
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	[19]	Run 1&2	Updated	$r_{D\pi^{\pm}}^{D\pi^{\pm}}$	0.00490	+0.00059	[0.00437, 0.00549]	+0.0013	[0.0]
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[31]	Run 1&2	As before	$\delta_{D^{\pm}}^{D^{\pm}}$ [°]	294.0	+9.7	[283, 303,7]	+19	[
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before	$r_{D+}^{D+K\pm}$	0.098	+0.017	[0.079, 0.115]	+0.031	[0]
$B^\pm ightarrow D^* h^\pm$	$D ightarrow h^+ h^-$	[29]	Run 1&2	As before	$\delta_{D^{+}K^{\pm}}^{D^{+}K^{\pm}}[\circ]$	308	-0.019 +12	[283, 320]	+21	[0]
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	[33]	Run 1&2(*)	As before	$r_{B^{\pm}}^{D^{*}\pi^{\pm}}$	0.0091	-25 +0.0081	[0.0035, 0.0172]	-69 +0.016	[0.0
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[33]	Run 1&2(*)	As before	$\delta_{D}^{D*\pi^{\pm}}$	137	-0.0056 +22	[54 159]	-0.0085 +32	[0.0
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^+ h^-$	34	Run 1	As before	$r_{DK^{*\pm}}^{DK^{*\pm}}$	0.108	-83 + 0.016	[0.089, 0.124]	-130 + 0.030	0]
$B^0 \rightarrow DK^{*0}$	$D ightarrow h^+ h^-$	[35]	Run 1&2(*)	As before	$\delta DK^{*\pm}$	34	-0.019 +20	[19, 54]	-0.039 +54	[0.
$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[35]	Run 1&2(*)	As before	${}^{O}B^{\pm}$	0.249	$^{-15}_{+0.022}$	[10, 04] [0.224, 0.271]	$^{-28}_{+0.044}$	[0]
$B^0 ightarrow DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	[36]	Run 1	As before	${}^{\prime}B^{0}$ ${}^{\delta}DK^{*0}[\circ]$	108	-0.025 +10	[188 4 208]	-0.051 +24	[0. [
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before	$D_{s}^{T}K^{\pm}$	0.310	-9.6 +0.096	[100.4, 200]	-19 +0.20	۱ آ(
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	[38]	Run 1	As before	B_{a}^{0} $D_{a}^{+}K^{\pm}$ [0]	0.510	-0.094 +19	[0.210, 0.400]	-0.22 +39	LC LC
$B^0_s ightarrow D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[39]	Run 1&2	As before	$0_{B_{q}^{0}}$ [] $D^{\pm}K^{\pm}\pi^{+}\pi^{-}$	300	-18 + 0.081	[338,375]	-38 + 0.16	l
D decay	Observable(s)	Ref.	Dataset	Status since	$r_{B_{q}^{0}}^{D_{q}}K^{\pm}\pi^{\pm}\pi^{-}K^{\pm}$	0.460	-0.085	[0.375, 0.541]	-0.17	IC IC
				Ref. [14]	$\delta^{D_s R = n + n}_{B_s^0}$ [°]	346	$^{+12}_{-12}$	[334, 358]	+20 -25	l
$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	24,40,41	Run 1&2	As before	$r_{B^0}^{D^+\pi^{\pm}}$	0.030	+0.016 -0.012	[0.018, 0.046]	+0.041 -0.027	[0.
$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	16, 24, 25	Run 2	New	$\delta^{D^+\pi^\pm}_{B^0}[^\circ]$	32	$^{+26}_{-40}$	[-8, 58]	$^{+45}_{-86}$	
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^- \pi^+}$	42	Run 1	As before	$r_{B^{\pm}}^{DK^{\pm}\pi^{+}\pi^{-}}$	0.079	+0.028 -0.034	[0.045, 0.107]	$^{+0.049}_{-0.079}$	[0.0
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	15	Run 2	New	$r_{B^{\pm}}^{D\pi^{\pm}\pi^{+}\pi^{-}}$	0.068	+0.026 -0.030	[0.038, 0.094]	+0.039 -0.068	[0.0
$D^0 ightarrow h^+ h^-$	ΔY	43 46	Run 1&2	As before	x[%]	0.398	+0.050 -0.049	[0.349, 0.448]	$^{+0.099}_{-0.10}$	[0
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	47	Run 1	As before	y[%]	0.636	$^{+0.020}_{-0.019}$	[0.617, 0.656]	$^{+0.041}_{-0.039}$	[0.
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	48	Run 1&2(*)	As before	$r_D^{K\pi}[\%]$	5.865	$^{+0.014}_{-0.015}$	[5.850, 5.879]	+0.029 -0.030	[5.
$D^0 \rightarrow K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(x^2 + y^2)/4$	49	Run 1	As before	$\delta_D^{K\pi}[\circ]$	190.2	$^{+2.8}_{-2.8}$	[187.4, 193.0]	$^{+5.6}_{-6.1}$	[18
$D^0 \rightarrow K^0_S \pi^+ \pi^-$	x, y	50	Run 1	As before	q/p	0.995	$^{+0.015}_{-0.016}$	[0.979, 1.010]	$^{+0.032}_{-0.032}$	[0.
$D^0 \rightarrow K_{\rm S}^{0} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	51	Run 1	As before	$\phi[^\circ]$	-2.5	$^{+1.2}_{-1.2}$	[-3.7, -1.3]	$^{+2.4}_{-2.5}$	[-
$D^0 \rightarrow K_{\rm S}^{0} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	52	Run 2	As before	$a^{\mathrm{d}}_{K^+K^-}[\%]$	0.090	+0.057 -0.057	[0.033, 0.147]	$^{+0.11}_{-0.12}$	[-
$D^0 \to K_{\rm S}^{0} \pi^+ \pi^- \ (\mu^- \ {\rm tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[17]	Run 2	New	$a^{\mathrm{d}}_{\pi^+\pi^-} [\%]$	0.240	+0.061 -0.062	[0.178, 0.301]	$^{+0.12}_{-0.12}$	[(

LHCb-CONF-2022-003

Federico Betti - University of Edinburgh

WIFAI 2023 - 08/11/2023

CLInterval 56.3, 70.7] 0930, 0.1017]20.0, 133.8] [0039, 0.0062][272, 313].061, 0.129] [239, 329]0006, 0.025][7, 169].069, 0.138] [6, 88].198, 0.293] [179, 222][0.09, 0.51][318, 395][0.29, 0.62][321, 372].003, 0.071][-54, 77].000, 0.128]* $000, 0.107]^*$ 0.30, 0.497.597, 0.677] .835, 5.894] 84.1, 195.8] .963, 1.027] -5.0, -0.1] -0.03, 0.20[0.12, 0.36]

41

Landscape after 10 years

Federico Betti - University of Edinburgh

Landscape after 10 years

Federico Betti - University of Edinburgh

Charm at LHCb

- Large $c\overline{c}$ production cross section $\sigma(pp \to c\bar{c}X)_{\sqrt{s=13 \text{ TeV}}} = (2369 \pm 3 \pm 152 \pm 118) \ \mu b$
- More than 1 billion $D^0 \to K^- \pi^+$ decays reconstructed with the full LHCb data sample
- JINST 3 (2008) S08005 • LHCb detector:
 - + Excellent vertex resolution (13 μ m in transverse plane for PV)
 - + Excellent IP resolution ($\sim 20 \ \mu m$)
 - + Very good momentum resolution ($\delta p/p \sim 0.5\% 0.8\%$)
 - Excellent PID capabilities
 - Very good trigger efficiency (~90%)

JHEP 05 (2017) 074 $\sigma(pp \to D^0 X) = 2072 \pm 2 \pm 124 \,\mu b$ $\sigma(pp \rightarrow D^+X) = 834 \pm 2 \pm 78\,\mu b$ $\sigma(pp \rightarrow D_s^+ X) = 353 \pm 9 \pm 76 \,\mu b$ $\sigma(pp \to D^{*+}X) = 784 \pm 4 \pm 87 \,\mu b$

Other future prospects (LHCb)

Sample (\mathcal{L})	Yield $(\times 10^6)$	$\sigma(x_{K\pi}^{\prime 2})$	$\sigma(y'_{K\pi})$	$\sigma(A_D)$	$\sigma(q/p)$	σ
Run 1–2 (9fb^{-1})	1.8	$1.5 imes10^{-5}$	$2.9 imes10^{-4}$	0.51%	0.12	1
Run 1–3 (23fb^{-1})	10	$6.4 imes10^{-6}$	$1.2 imes 10^{-4}$	0.22%	0.05	4
Run 1–4 (50fb^{-1})	25	$3.9 imes10^{-6}$	$7.6 imes10^{-5}$	0.14%	0.03	
Run 1–5 (300fb^{-1})	170	$1.5 imes10^{-6}$	$2.9 imes10^{-5}$	0.05%	0.01	

Sample (\mathcal{L})	Yield $(\times 10^6)$	$\sigma(x'_{K\pi\pi\pi})$	$\sigma(y'_{K\pi\pi\pi})$	$\sigma(q/p)$	$\sigma($
Run 1–2 (9fb^{-1})	0.22	$2.3 imes10^{-4}$	$2.3 imes10^{-4}$	0.020	1.
Run 1–3 (23fb^{-1})	1.29	$0.9 imes10^{-4}$	$0.9 imes10^{-4}$	0.008	0.
Run 1–4 (50fb^{-1})	3.36	$0.6 imes10^{-4}$	$0.6 imes10^{-4}$	0.005	0.
Run 1–5 (300fb^{-1})	22.5	$0.2 imes 10^{-4}$	$0.2 imes 10^{-4}$	0.002	0.

LHCB-PUB-2018-009

Federico Betti - University of Edinburgh

Other future prospects (LHCb)

Sample (\mathcal{L})	$D^+ \rightarrow$	$K^-K^+\pi^+$	$D^+ \to \pi^- \pi^+ \pi^+$	$D^+ \to K^- K$	$K^{+}K^{+}D^{+}-$	$\rightarrow \pi^- K^-$
Run 1–2 (9 fb	(-1)	200	100	14		8
Run 1–4 (23 f	(b^{-1}) 1	,000	500	70		40
Run 1–4 (50 f	(b^{-1}) 2	2,600	$1,\!300$	182		104
Run 1–6 (300	fb^{-1}) 1	$7,\!420$	8,710	1,219		697
		$D^{0} -$	$\pi^+\pi^-\pi^+\pi^-$	$D^0 \to K^+$	$K^-\pi^+\pi^-$	_
San	nple (\mathcal{L})	Yield (\times	$10^6) ~~\sigma(a_{C\!P}^{\widehat{T} ext{-odd}})$	Yield $(\times 10^6)$	$\sigma(a_{C\!P}^{\widehat{T} ext{-odd}})$	
Ru	n 1–2 (9 ${\rm fb}^{-1}$)	13.5	$2.4 imes10^{-4}$	4.7	$5.4 imes 10^{-4}$	_
Ru	n 1–3 (23 fb ^{-1})	69	$1.1 imes10^{-4}$	12	$3.4 imes10^{-4}$	
Ru	n 1–4 (50 fb ⁻¹)	150	$7.5 imes10^{-5}$	5 26	$2.3 imes10^{-4}$	
Ru	n 1–5 $(300{ m fb}^{-1})$) 900	$2.9 imes10^{-5}$	5 156	$9.4 imes 10^{-5}$	

LHCB-PUB-2018-009

Federico Betti - University of Edinburgh

Other future prospects (Belle II)

$D^0 \rightarrow K^+ \pi^- / D^0 \rightarrow K^- \pi^+$

Parameter	$5 ab^{-1}$	$20ab^{-1}$	$50 ab^{-1}$
$\delta x^{\prime 2} (10^{-5})$	6.2	3.2	2.0
δy' (%)	0.093	0.047	0.029
δx' (%)	0.32	0.22	0.13
δy' (%)	0.23	0.15	0.097
$\delta q/p $	0.174	0.073	0.043
$\delta \phi$ (°)	13.2	8.4	5.4

Federico Betti - University of Edinburgh

47