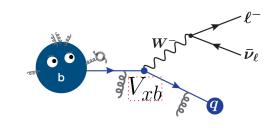
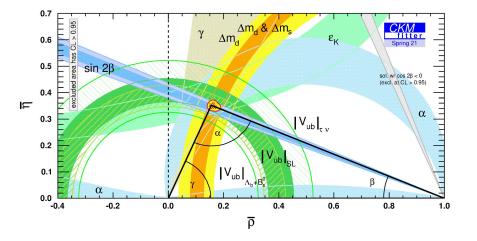
Second Italian Workshop on the Physics at High Intensity

Rome, 8–10 November 2023

Overview of CKM metrology from semileptonic *B* decays

Stefano Moneta on behalf of the Belle II Collaboration

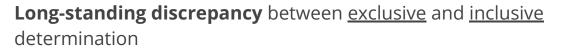


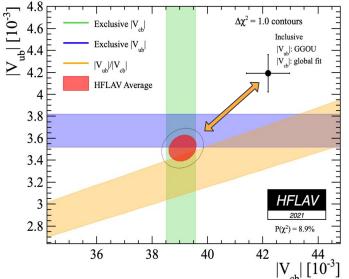

Semileptonic *b* decays

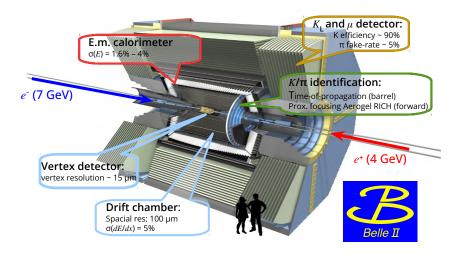
- **Tree level** process → only Standard Model contributions
- Only one hadronic current with heavy hadrons → **theoretically clean**

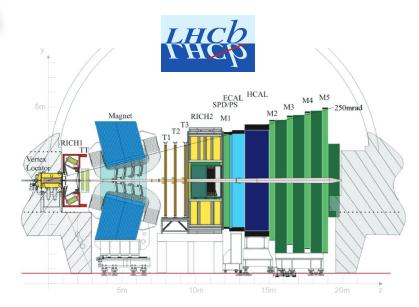
Probe the CKM model determining $|V_{ub}|$ and $|V_{cb}|$

- Limiting constraint on the unitarity triangle
- Important input for other observables, e.g. $K \rightarrow \pi \nu \nu$

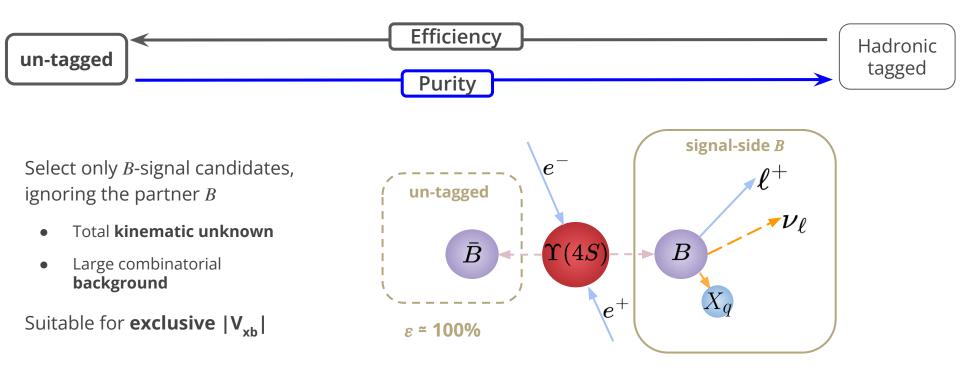



|V_{xb}| measurements

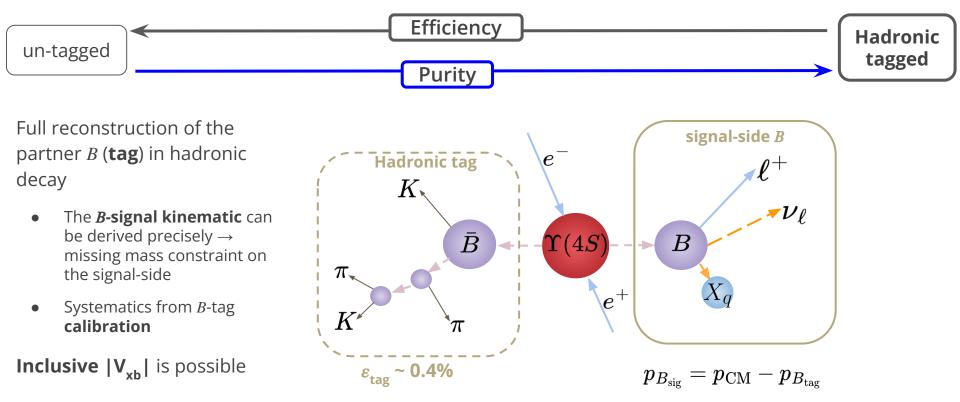

- **Exclusive**: $B \rightarrow (\pi, \varrho, ...) \ \ell \nu, B \rightarrow (D, D^*, ...) \ \ell \nu +$
 - Many channels **accessible** from experiments
 - Need form factors from theory \rightarrow rely on lattice QCD (**LQCD**)
- Inclusive $B \rightarrow X_a \ell \nu \quad q=u,c$
 - Experimentally **harder**
 - Use Operator Product Expansion (OPE) and shape functions (non-perturbative for $|V_{ub}|$)


• Belle (II) and LHCb will help towards a better understanding

Belle II and LHCb experiments

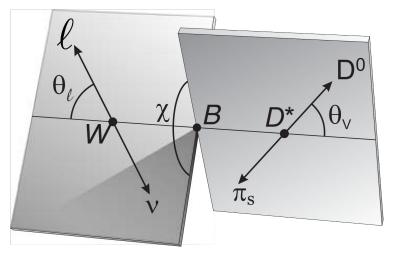

- *e*⁺*e*⁻ collisions @ *Υ*(4S), ~**390 M BB** pairs produced
- **Clean** environment
- High **hermeticity** (~ 4π acceptance)
- Better neutral reconstruction

- *pp* collisions, **very large** *b***-hadrons sample**, >10¹² including barions
- High background environment
- Better charged reconstruction


B-meson reconstruction at B-factories

B-meson reconstruction at B-factories

Comput Softw Big Sci 3, 6 (2019)



$|V_{cb}|$ with $B^0 \rightarrow D^* \ell v$

- Half of available statistics: ~200 BB pairs
- Explore both **tagged** and **untagged** approach

Fully differential rate with $D^* \rightarrow D^0 \pi_s$, over 4 kinematic parameters:

- D^* recoil parameter: w (prop. to $-q^2$) • $w = v_B \cdot v_D^*$
- Elicity **angles**:
 - $^{\circ}~ heta_{\ell},\, heta_{V},\,\chi$

$$\frac{d\Gamma}{dw \, d \cos \theta_{\ell} \, d \cos \theta_{V} \, d\chi} \propto |V_{cb}|^{2} |F(w, \cos \theta_{\ell}, \cos \theta_{V}, \chi)|^{2}$$
Differential decay rate Differential form factor

$|V_{cb}|$ with untagged $B^0 \rightarrow D^* \ell v$

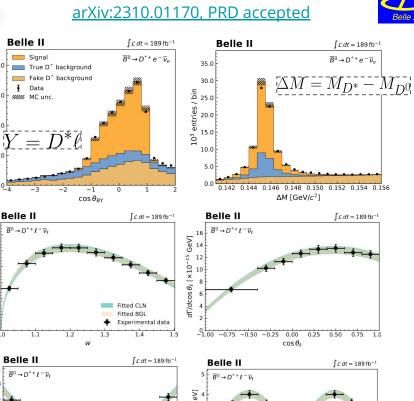
- Estimate the flight direction of signal-*B*
 - \circ exploit decay kinematic and the rest of event \rightarrow improved resolution w.r.t. Belle and BaBar
- Signal yield extracted on each bin with a **2D fit**
 - $\cos\theta_{\text{BY}}$ (cosine of signal-*B* and reconstructed $D^*\ell$)
 - ΔM (mass different btw D^* and D^0)
- Extract $|V_{cb}|$ with **BGL form factors**:

Use LQCD for low w PRD 89, 114504 (2014) G 15.01

10³ entries / - -,1 0.01

> [7 18 GeV

[×10⁻

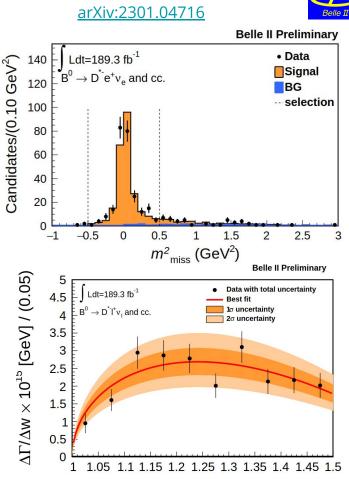

 $d\Gamma/d\cos\theta_V$

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

cos 0

 $|V_{cb}|_{
m BGL} = (40.9 \pm 0.3_{
m stat} \pm 1.0_{
m sist} \pm 0.6_{
m teor}) imes 10^{-3}$

- Systematics dominated by **slow pion** efficiency
- In **agreement** with both inclusive and exclusive HFLAV averages

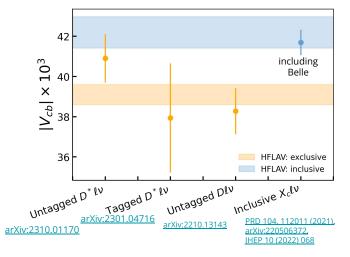


 $|V_{ch}|$ with tagged $B^0 \rightarrow D^* \ell v$

- *B***-signal momentum** inferred exploiting the reconstructed *B*-tag
- Small backgrounds, but lower statistics w.r.t. untagged analysis \rightarrow differentiate only in w
- Extract signal yields from fit on **missing mass** squared
- $|V_{cb}|$ determined in **CLN** parameterization (Caprini, Lellouch, Neubert) from the differential decay rate $\Delta\Gamma/\Delta w$

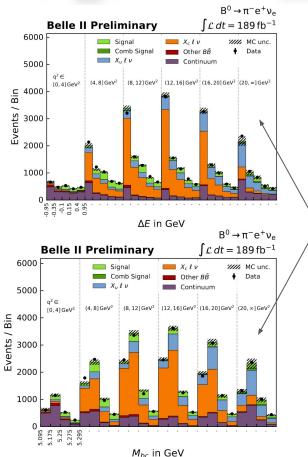
 $[V_{cb}] = (37.9 \pm 2.7) \times 10^{-3}$

 Dominant systematics are slow pion efficiency and calibration of the *B*-tag efficiency (both ~4%)


W

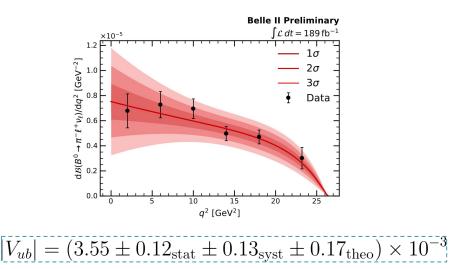
Summary and prospects: |V_{cb}| @Belle II

- First **exclusive** measurements at Belle II
 - exploit statistical power of *untagged* measurements
- **Inclusive** effort started with measurement of q^2 moments in $B \rightarrow X_c \ell v$ (arXiv:220506372)
- Fairly new detector \rightarrow room for performance optimization
 - Reduce systematics, e.g. lepton identification, slow pions, *B*-tagging
- Aim to measure $|V_{cb}|$ at ~1% precision with larger dataset (<u>Snowmass White Paper</u>)



$|V_{ub}|$ with untagged $B^0 \rightarrow \pi \ell v$

 q^2 bin

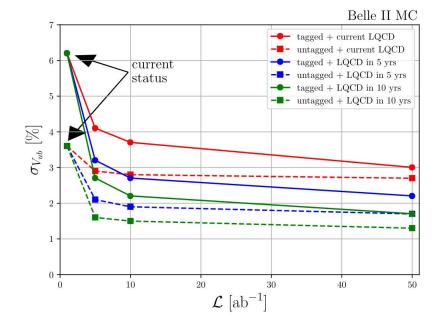


• Signal yields extracted in 6 q^2 bins by a 2D fit on energy difference ΔE and beam-constrained mass M_{hc}

$$\Delta E = E_B - E_{\text{beam}} \qquad M_{bc} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_B|^2}$$

• |V_{ub}| determined from the decay rate spectrum using LQCD form factors (FNAL/MILC)

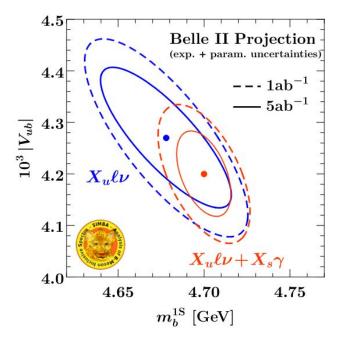
arXiv:2210.04224



12

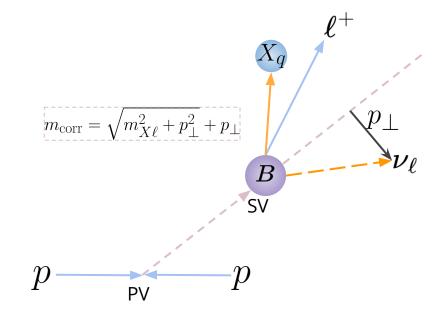
Prospects: exclusive |V_{ub}| @Belle II Snowmass White Paper

- Belle II will double the precision on exclusive |V_{ub}| (at least 3%), even assuming no improvements in form factors uncertainties
- Untagged measurements limited by LQCD
 inputs
- **Tagged** measurements limited by the **calibration** of *B*-tag efficiency
 - Improvement of tagging algorithm will be fundamental with higher statistics
- Move towards direct measurements of |V_{ub}|/|V_{cb}|



Prospects: inclusive |V_{ub}| @Belle II <u>Snowmass White Paper</u>

- Inclusive |V_{ub}| is very challenging, unique to Belle (II)
- With larger sample size and improved *B*-tag, expected to reach **~3% precision**
 - Further improvements with a **global fit** including the shape-function from $B \rightarrow X_s \gamma$
- Explore simultaneous determination of incl. and excl. |V_{ub}|, first measurement by Belle <u>arxiv:</u> 2303.17309
- Improve shape-function knowledge via differential measurement of inclusive BR as done by Belle <u>PRL</u> <u>127, 261801 (2021)</u>



B-meson reconstruction at hadron colliders

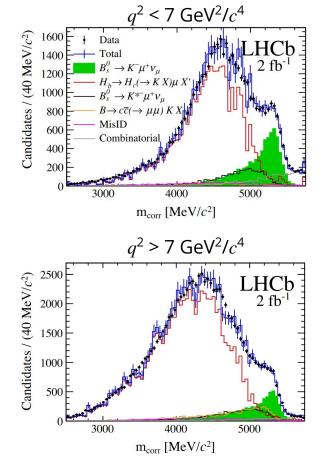
The *B*-meson **direction** is derived from **vertex reconstruction**, however its energy is unknown

- Determine **neutrino** direction with a 2-fold ambiguity (to compute *q*²)
- Use " p_{\perp} -corrected" mass (m_{corr}) to approximate *B* mass
- Need a **normalization channel** to measure BR (critical for systematics)

Focus on **exclusive** |V_{xb}|

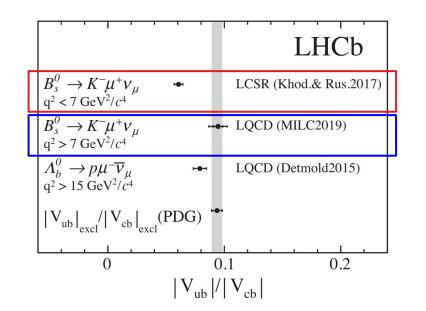
$$|V_{ub}| / |V_{cb}|$$
 with $B^0_s \rightarrow K \mu v$

LHCb can exploit a huge B_s sample \rightarrow **theoretically cleaner** than B_u and B_d (heavier spectator quark)


- Run1 dataset (2 fb⁻¹@ 8 TeV)
- Normalization channel
 - $\circ \qquad B^0{}_{\rm s} \to D^-{}_{\rm s}\,\mu^+\nu_\mu \text{ with } D^-{}_{\rm s} \to K^+K^-\pi^-$

Extract $|V_{ub}| / |V_{cb}|$ from the **BR ratio** into **two** q^2 **bins**:

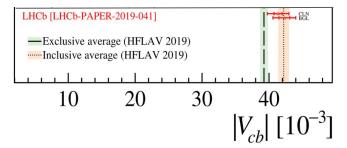
$$\frac{\mathcal{B}(B_{s}^{0} \to K^{-}\mu^{+}\nu_{\mu})}{\mathcal{B}(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu})} = \frac{N_{K}}{N_{D_{s}}} \frac{\epsilon_{D_{s}}}{\epsilon_{K}} \times \mathcal{B}(D_{s}^{-} \to K^{+}K^{-}\pi^{-})$$
Extract from ML fit on m_{corr}
Extract from measurement


$|V_{ub}| / |V_{cb}|$ with $B^0_s \rightarrow K \mu \nu$

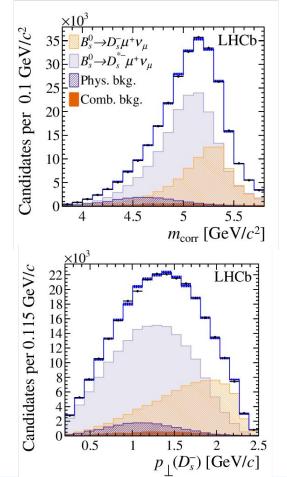
Use different **form factors** for $B^0_{\ s} \rightarrow K\mu\nu^{\ (\star)}$, to maximize theoretical input precision:

- Low q^2 : LCSR (light cone sum rule)
- High q² : LQCD (lattice QCD)

• **Discrepancy** in the two q² regions driven by **different FF** (dominant systematics)


 \rightarrow Investigate finer q^2 bins with the full LHCb dataset

PRL 126, 081804 (2021)


 $|V_{ch}|$ with $B^0_s \rightarrow D_s^{(*)}\mu\nu$

- Full Run1 dataset (1 fb⁻¹@ 7 TeV + 2 fb⁻¹@ 8 TeV)
- Use the corresponding B^0 mode as a **normalization** channel: $B^0 \rightarrow D^{(*)}\mu\nu$
- **Differential** decay rate in $w \rightarrow$ approximate by (transverse) momentum $p_{\perp}(D_s)$ of the D_s
- Extract signal in **2D fit** on m_{corr} and $p_{\perp}(D_{\text{s}})$
- Extract $|V_{cb}|$ with both CLN and BGL form factors
 - \circ Extracted values compatible with each other

Prospects: exclusive |V_{xb}| @LHCb

arXiv:1808.08865

• Looking for updates with the **Run2** dataset

- finer **binning in** q^2 should be possible
- **fully differential** measurements to validate FF
- A significant improvement expected in $|V_{ub}|$ precision from differential measurement of exclusive $B^0_{\ s} \rightarrow K\mu\nu$
- Exploit the **unique** Λ_b sample
 - planned $|V_{cb}|$ measurement on $\Lambda_b^0 \rightarrow \Lambda_c uv$
 - update on $|\mathbf{V}_{ub}|$ from $\Lambda_b^0 \rightarrow p \mu v$, last measurement <u>Nature Physics 11 (2015)</u>

Experiment	LHCb			
	Run 1	Run 2	Runs 3–4	Runs 5–6
Completion date	2012	2018	2031	2041
Center-of-mass energy	$7/8~{ m TeV}$	$13 { m TeV}$	$14 { m TeV}$	$14 { m TeV}$
$b\overline{b}$ cross section [nb]	$(3.0/3.4) \times 10^5$	5.6×10^5	$6.0 imes 10^5$	$6.0 imes 10^5$
Integrated luminosity $[fb^{-1}]$	3	6	40	300
B^0 mesons $[10^9]$	100	350	2,500	19,000
B^+ mesons $[10^9]$	100	350	2,500	19,000
B_s mesons $[10^9]$	24	84	610	$4,\!600$
Λ_b baryons $[10^9]$	51	180	1,300	9,800
B_c mesons $[10^9]$	0.8	4.4	19	150

RMP 94, 015003 (2022)

Summary

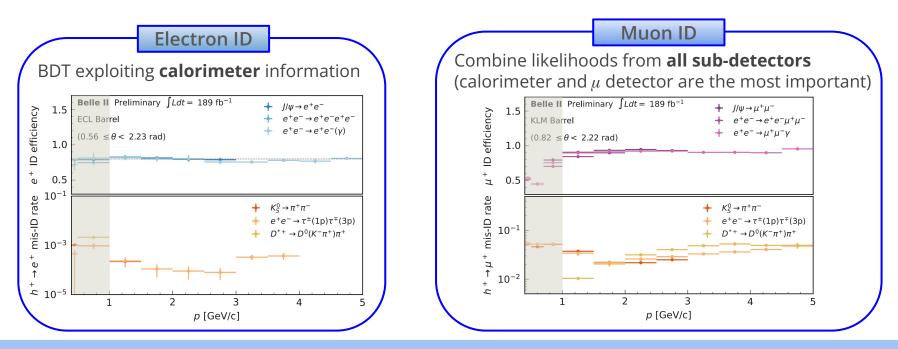
The tension between different determinations of $|V_{xb}|$ still exists.

• From **theory**: improved inputs from **LQCD** will be fundamental

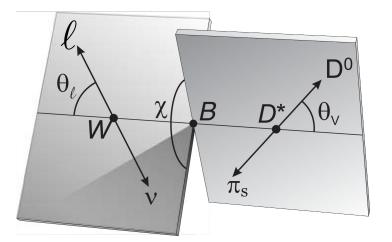
Belle (II) is the major actor in the semileptonic $|V_{xb}|$ determination

- First measurements exploit the statistical power of untagged analysis
- A lot of **different** measurements possible

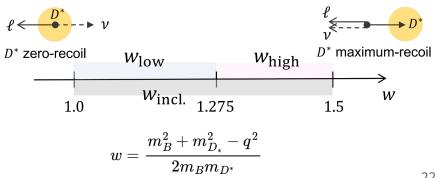
LHCb can deliver **complementary** tests on **exclusive** measurements exploiting B_s and Λ_h


- First exclusive $|V_{xb}|$ measurements at a **hadron collider**
- Competitive results on **exclusive** |**V**_{cb}|

Backup slides


Lepton Identification at Belle II

• Efficiencies and fake rates measured on different well-known control channels BELLE2-CONF-PH-2022-003



$B^0 \rightarrow D^* \ell v$ angular variables

Semileptonic *B* decays to D* vector

- **4 parameters** to fully describe $B \rightarrow D^* \ell v$ decay:
 - $\circ \quad \ell_{^{_{\mathcal{V}}}}$ invariant mass $\quad q^2 = (p_B p_{D^*})^2$
 - \circ 3 helicity angles $\, heta_\ell,\, heta_V,\,\chi$
- Properties of *V A* coupling and spin of virtual *W* boson are encoded in angular distributions
- Use D^* recoil parameter w: product of B and D^* four-velocity (it is proportional to $-q^2$)

