Overview of time-integrated CP violation in *b*-hadron decays Workshop Italiano Fisica Alta Intensità 2023

Davide Fazzini

Istituto Nazionale di Fisica Nucleare

CP violation (CPV) in the Standard Model

- CKM matrix describe quark charged current weak interactions
- Key test of the Standard Model (SM): verify unitary of CKM matrix
 - Magnitudes: measuring branching fractions or mixing frequencies
 - Phase: measure CPV

- $V_{CKM} = egin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \ -|V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}|e^{-ieta} & -|V_{ts}|e^{ieta_s} & |V_{tb}| \end{pmatrix}$
- Sensitivity to BSM effects from global consistency of various measurements

CP violation (CPV) in the Standard Model

- Direct CPV arises from the interference between amplitudes with different weak and strong
 phases leading to the same final state:
 - Strong phase: short-distance penguin contributions, hadronic final-state-interactions(FSI)
 - Weak phase: CKM matrix elements
- Example of at least 2 competitive amplitudes:

$$\begin{aligned} \mathcal{A}(B \to f) &= |A_1|e^{i(\delta_1 + \gamma_1)} + |A_2|e^{i(\delta_2 + \gamma_2)} \\ \mathcal{A}_{CP} &= \frac{|\mathcal{A}(B \to f)|^2 - |\mathcal{A}(\bar{B} \to \bar{f})|^2}{|\mathcal{A}(B \to f)|^2 + |\mathcal{A}(\bar{B} \to \bar{f})|^2} = \frac{2|\mathcal{A}_2/\mathcal{A}_1|\sin(\delta_1 - \delta_2)\sin(\gamma_1 - \gamma_2)}{1 + |\mathcal{A}_2/\mathcal{A}_1|\cos(\delta_1 - \delta_2)\cos(\gamma_1 - \gamma_2)} \end{aligned}$$

- CPV predicted for baryons within the SM but never observed
- In contrast with the CPV in b-meson decays, b-baryons sector remains almost unexplored
- Thanks to the large production cross-section of *b*-baryons in pp collisions at the LHC, LHCb is the only experiment capable of expanding our knowledge in this sector
- The first observation of *CPV* in a baryon decay is already within the reach of LHCb with the data collected during the Run 2 of the LHC
 - first hint for *CPV* in baryon decays has been reported in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays

CKM angle γ

- γ is the phase between $b \rightarrow c$ and $b \rightarrow u$
- Theoretically clean measurement at 10⁻⁷ level [arXiv:1308.5663]
- Determined from tree-level decays SM benchmark
- γ accessed in many ways using $b \rightarrow c \rightarrow u$ transitions

B decays

- $B^0
 ightarrow DK^{*0}, B^0
 ightarrow D^{\mp}\pi^{\pm}$
- $B_s
 ightarrow D_s^{\mp} K^{\pm}, \, B_s
 ightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$
- $B^+ \rightarrow Dh^+, B^+ \rightarrow D^*h^+, B^+ \rightarrow DK^{*+}, B^+ \rightarrow Dh^+\pi^+\pi^-$
- Close sensitivity gap:
 - Direct measurement: $\gamma = (71.1^{+4.1}_{-4.5})^{\circ}$ [HFLAV20]
 - Indirect measurement: $\gamma = (65.7^{+0.9}_{-2.7})^{\circ}$ [CKMFitter19]
- $\bullet\,$ BaBar and Belle achieved precision of around 15°. LHCb has achieved 4° precision
- Important role for BESIII (Quantum correlated measurements at the $\psi(3770)$)

D decays

•
$$D^{0} \to K^{+}\pi^{-}, D^{0} \to h^{+}h^{-}$$

• $D^{0} \to K_{s}h^{+}h^{\prime-}, D^{0} \to h^{+}h^{\prime-}\pi^{0}$
• $D^{0} \to K^{-}\pi^{+}\pi^{-}\pi^{+}, D^{0} \to K^{+}K^{-}\pi^{+}\pi^{-}, D^{0} \to K_{s}\pi^{+}\pi^{-}\pi^{0}, D^{0} \to \pi^{-}\pi^{+}\pi^{-}\pi^{+}$

The B ightarrow K π puzzle

- Time-integrated *CP* asymmetry in $B^0 \to K^+\pi^-$ and $B_s \to \pi^+K^-$
- Direct *CP* in $B^+ \to K^+ \pi^0$ decays, 5.4 fb⁻¹ (first analysis of a one-track decay at a hadron collider)

$$oldsymbol{A}_{C\!P} = rac{|\overline{oldsymbol{A}}_{ar{f}}|^2 - |oldsymbol{A}_f|^2}{|\overline{oldsymbol{A}}_{ar{f}}|^2 + |oldsymbol{A}_f|^2}$$

 $\Delta A_{CP}(K\pi) \equiv A_{CP}(B^+ \to K^+\pi^0) - A_{CP}(B^0 \to K^\pm\pi^\mp) \neq 0$ by 8.8 σ ! Isospin symmetry breaking

$K\pi$ isospin sum rules @ Belle II [arXiv:2105.04111]

• Isospin sum-rule relation for $B \rightarrow K\pi$ provides a stringent SM test [Phys. Lett. B627 82-8]

$$I_{K\pi} = A_{K^{+}\pi^{-}} + A_{K^{0}\pi^{+}} + \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

• WA: $I_{K\pi} = (13 \pm 11)\%$, precision limited by $K_s^0 \pi^0$

$$\begin{split} A^{B^0 \to K^+ \pi^-}_{C\!P} &= (-0.16 \pm 0.05_{stat} \pm 0.01_{syst}) \\ A^{B^+ \to K^0 \pi^+}_{C\!P} &= (-0.01 \pm 0.08_{stat} \pm 0.05_{syst}) \\ A^{B^+ \to K^+ \pi^0}_{C\!P} &= (-0.09 \pm 0.09_{stat} \pm 0.03_{syst}) \\ A^{B^0 \to K^0 \pi^0}_{C\!P} &= (-0.01 \pm 0.12_{stat} \pm 0.05_{syst}) \\ I_{K\pi} &= -0.03 \pm 0.13_{stat} \pm 0.05_{syst} \end{split}$$

 $[A_{CP}^{B^0 \to K^0 \pi^0}$ requires a TD analysis] Belle II is the only experiment that accesses to all channels

$B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ @ LHCb: Invariant mass fit [Phys. Rev. D108 (2023) 012008]

Invariant mass fit:

Decay mode

 $B^{\pm} \rightarrow K^{\pm} \pi^{+} \pi^{-}$

 $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$

 $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

 $B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$

- signal: Gaussian + two Crystal Balls
- combinatorial: exponential
- part. reco.: Argus convolved with a Gaussian
- Asymmetry determined from signal yields:

$$m{A}_{\it raw} = rac{N^- - N^+}{N^- + N^+}$$

Total vield

 $499\ 200+900$

 $365\ 000 + 1000$

 $101\ 000\pm 500$

 32470 ± 300

• A_{raw} corrected by efficiency & production asym. determined on $B^{\pm} \rightarrow J/\psi K^{\pm}$

 $+8.0 \pm 0.4_{stat} \pm 0.3_{svst} \pm 0.3_{J/\psi K}$

 $-11.4 \pm 0.7_{stat} \pm 0.3_{syst} \pm 0.3_{J/\psi K}$

First observation in $B^\pm o K^\pm K^+ K^-$ & $B^\pm o \pi^\pm \pi^+ \pi^-$

 $+9.0 \pm 0.4$

 -13.2 ± 0.7

 14.1σ

 13.6σ

 $n^2(\pi^+\pi)_{high}$ [GeV²/c

25

20

15

10 F

5

- Histogram created by an adaptive binning algorithm
- The asymmetry is calculated from the number of events in the bin
- Localized asymmetry within the range $\pm 80\%$
- Example for the $\pi^{\pm}\pi^{+}\pi^{-}$ final state

[Phys. Rev. D108 (2023) 012008]

LHCb

5.9 fb⁻¹

 ${}^{Van}_{Van} {}^{S.0}_{Van}$

0.4

0.2

-0.2

-0.6

B^{\pm} decays into a vector + scalar resonance @ LHCb [Phys. Rev. D108 (2023) 012013]

• Asymmetry \propto amplitude squared:

$$|\mathcal{M}_{\pm}|^{2} = \boxed{p_{0}^{\pm}}_{\text{Direct scalar } A_{CP}} + \boxed{p_{1}^{\pm}\cos\theta(m_{V}^{2}, s_{\perp})}_{\text{Scalar & vector interference}} + \boxed{p_{2}^{\pm}\cos^{2}\theta(m_{V}^{2}, s_{\perp})}_{\text{Direct vector } A_{CP}}$$

• Amplitude parameters determined as a quadratic function in $\cos \theta$

$$A_{CP}^{V} = rac{|M_{-}|^{2} - |M_{+}|^{2}}{|M_{-}|^{2} + |M_{+}|^{2}} = rac{p_{2}^{-} - p_{2}^{+}}{p_{2}^{-} + p_{2}^{+}}$$

 $B^{\pm}
ightarrow (V
ightarrow h^+ h^-) h^{\pm}$ contributions:

•
$$B^{\pm} \to (\rho(770)^0 \to \pi^+\pi^-)\pi^{\pm}$$

•
$$B^{\pm} \to (\rho(770)^0 \to \pi^+\pi^-) K^{\pm}$$

•
$$B^{\pm}
ightarrow (K^*(892)^0
ightarrow K^+\pi^-)\pi^{\pm}$$

•
$$B^{\pm}
ightarrow (K^*(892)^0
ightarrow K^+\pi^-)K^{\pm}$$

•
$$B^{\pm}
ightarrow (\phi(1020)
ightarrow K^+ K^-) K^{\pm}$$

Data selected in a narrow region around a vector resonance

- First observation of *CP* asymmetry in $B^{\pm} \rightarrow \rho$ (770)⁰ K^{\pm} decays at 7.9 σ
- No asymmetry observed in the other three decay modes

previous results:

• LHCb: A_{CP} = (+0.7 ± 1.1 ± 1.6)% [PRL 124 031801]

Previous results:

• Belle: $A_{CP} = (30 \pm 11 \pm 2^{+11}_{-4})\%$ [PRL 96 251803]

CKM angle γ : $B^{\pm} \rightarrow DK^{\mp}(D \rightarrow K_s^0 h^+ h^-)$

- Full Run 1+2 data (9 fb⁻¹) [JHEP02(2021)169]
- Measured CPV parameters from the distribution of events in Dalitz plot
 External input: from CLEO and BESIII combined data
- - strong-phase $\delta_D = arg(A_{D^0}) arg(A_{\overline{D}^0})$ [PRD101, 112002(2020)]
- Most precise γ measurement from a single analysis!

• $D \rightarrow K^{0}h^{+}h$

150 100

0 08

rDK11/23

Two-fold ambiguity solved!

CKM angle γ : LHCb combination [??LHCb-CONF-2022-003]

- New combination of the LHCb results: $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$
- Compatible with indirect determinations:

•
$$\gamma = (65.7^{+0.9}_{-2.7})^{\circ}$$
 CKMfitte

• $\gamma = (65.8 \pm 2.2)^{\circ}$ UTfit

BPGGSZ study on $B \rightarrow D(K_s^0 h^+ h^-)h^-$ (h= π , K) @Belle II [JHEP 02 (2022) 63]

- Analysis performed with 711 fb⁻¹ Belle data & 128 fb⁻¹ Belle II data
- Unbinned 2D simultaneous fit of △E versus C'

GLW study for $B \rightarrow D(KK)K \& D(K_s \pi^0)K$ @ Belle II [JHEP 09 (2023) 146]

- Fitting simultaneously the $B \rightarrow D\pi$ and $B \rightarrow DK$ samples
- In GLW , CP-odd state accessible only to B-factories
- Direct evidence of opposite A_{CP} for even and odd states

$$egin{aligned} & A_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\% \ & A_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\% \end{aligned}$$

Search for *CPV* and observation of P violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ [Phys. Rev. D 102 051101]

- Dataset corresponding to an integrated luminosity of 6.6 fb⁻¹ (2011-17) at \sqrt{s} = 7, 8 and 13 TeV
- The measurement is performed using two different independent techniques:
 - Studying Triple Product Asymmetries (TPA)
 - Unbinned energy test method
- The search for CPV is performed by separating the P-odd and P-even contributions
- *CP* asymmetry depends on the absolute value of the angle between the planes defined by the $p\pi_{\text{fast}}^-$ and $\pi^+\pi_{\text{slow}}^-$ systems in the Λ_b^0 rest frame
- $\Lambda_b^0 \xrightarrow{} \Lambda_c^+ (\to \rho K^- \pi^+) \pi^-$ decays used to assess experimental biases and systematics

Search for *CPV* and observation of P violation in $\Lambda_b^0 \rightarrow \rho \pi^- \pi^+ \pi^-$ [Phys. Rev. D 102 051101]

TPA results

Asymmetries [% 20 10 LHCb

10 14

Rin

- Two phase space binning schemes: A & B
- Main systematics are selection criteria, reconstruction and detector acceptance

$$a_{CP}^{\hat{T}-odd} = (-0.7 \pm 0.7 \pm 0.2)\% \ a_{P}^{\hat{T}-odd} = (-4.0 \pm 0.7 \pm 0.2)\%$$

 $m(p\pi^+\pi^-_{\rm slow}) > 2.8 \,{\rm GeV}/c^2$ scheme . scheme B χ²/ndof=13.5/16 scheme A. c/ndof=26.3/10 scheme B

0.5

Energy test results

20

- Energy Test method is insensitive to global asymmetries:
 - \implies not affected by differences between Λ_b^0 and $\bar{\Lambda}_b^0$ production rates

Distance scale δ	1.6 GeV^2/c^4	$2.7 \ GeV^2/c^4$	13 GeV^2/c^4
<i>p</i> -value (<i>CP</i> conservation, <i>P</i> even)	3.1×10^{-2}	2.7×10^{-3}	1.3×10^{-2}
<i>p</i> -value (<i>CP</i> conservation, <i>P</i> odd)	1.5×10^{-1}	$6.9 imes 10^{-2}$	$6.5 imes 10^{-2}$
<i>p</i> -value (<i>P</i> conservation)	$1.3 imes 10^{-7}$	$4.0 imes 10^{-7}$	$1.6 imes 10^{-1}$

dol [rad

 $m(p\pi^+\pi^-_{\rm slow}) < 2.8 \,{\rm GeV}/c^2$

Future perspectives

- Huge improvements in statistical sensitivities of all key physics channels are expected in the next 1-2 decades
 - \implies tests of the *CP* violation performed at a new regime of precision
- Main contribution expected by the Upgraded LHCb and the new Belle || experiments
- Two different but highly complementary physics program:

LHCb Upgrade1

- 50 fb⁻¹ in pp collisions at 13-14 TeV
- larger statistics in charged-track decay modes of all *b*-hadron species

Belle 2

- 50 ab^{-1} in e^+e^- collisions at the $\Upsilon(4S/5S)$
- unique capability to reconstruct $B_{(s)}^{0,+}$ decays with neutral or missing particles in final state
- Additional contributions will come in the HL-LHC era:
 - the phase-2 upgrade of ATLAS & CMS (Run4) with *b*-decays to final state containing muons
 - LHCb Upgrade2 will reach an instantaneous luminosity up to $2^{34}cm^{-2}s^{-1}$, collecting $\sim 300~b^{-1}$
- The knowledge of the angle γ will be improved by an order or magnitude at least,

 \implies reaching a sub degree precision

Future perspectives (II)

- Upgrade phases of the various experiments will enhance significantly the statistics available in all *b*-decay channels, allowing
 - high precision measurements in the decay modes we already studied
 - investigation of high-multiplicity or suppressed decay modes (with complementary experimental systematic uncertainties)

 \implies improving the constrains of the γ angle

- These high-multiplicity modes will play an important role in the future determination of γ , e.g. $B^0 \rightarrow D[\rightarrow K_s^0 \pi^+ \pi^-] K^+ \pi^-$ decays
- The sensitivity to γ comes mainly from the difference in rates of the *B* and \overline{B} processes \implies a precise control of the charged-particle identification & detection asymmetries is fundamental
- Both Belle2 & LHCb Upgrade are going to reduce these uncertainty thanks to the improvements in the detectors
- Control samples have to be used for a precise determination
- γ measurements often requires external strong-phase inputs (from CLEO & BESIII) new precise measurements with data from BESIII can reduce their uncertainty by \sim 50% but further analysis with larger datasets will be vital for not compromising the sensitivity to γ

Future perspectives: methods comparison

- γ angle can be determined though different methods obtaining very precise results..
- ... but what are the main limitations of these methods?

• $B \rightarrow DK$ GLW/ADS:

- D is reconstructed in two-charged tracks
- sensitivity to γ results from the ratio of the *B* amplitudes
- all measurements are currently statistically limited
- systematics arise from sources that decrease with increasing data, e.g. detector asymmetry, Λ_b & charmless backgrounds

• $B \rightarrow DK$ GGSZ:

- D is reconstructed in three-charged tracks, with self-conjugate final states
- sensitivity to γ obtained from the Dalitz plane for B^{\pm} meson
- systematics should in general scale with statistics, dominant are: strong-phase inputs & distribution of *D* meson in the Dalitz plane

• Decay modes with neutrals:

- excellent sensitivity to γ given by the exact phase difference between the D^{*0} modes
- efficient distinction of π^0 and γ is critical as the two D^{*0} modes have opposite *CP* asymmetries

Future perspectives: CP violation in baryons

- To date, most of the observed CPV has been in the meson sector
 - only LHCb has the opportunity to perform these measurements
 - low statistics available for each decay mode
- Theoretical calculations in the baryon sector are challenging due to the complex dynamics of strong interactions.
- An observation would have profound implications:
 - extend the realm of CP violation to a different category of particles
 - providing a more comprehensive view of this phenomenon
 - crucial test of the Standard Model
 - new constraints on the CKM matrix
 - sensitive probe for NP signs and potential deviations from SM predictions.
 - insights into the baryogenesis process
- Determination of production and detection asymmetries is more difficult wrt B mesons,
 - different interactions of baryons and antibaryons with the detector material are difficult to calibrate.
- Several quantities unaffected by experimental effects can be measured e.g.: the difference of CPV asymmetries of particles decaying to a similar final state, ΔA_{CP}, triple-product asymmetries (TPA) and energy-test (ET)

Conclusions

- γ known to better than 4°:
 - no longer the least precisely known CKM angle
 - aims to become the most precise standard candle of the UT
- Deepening the $K\pi$ puzzle
- Belle2: ramping up and producing wide range of interesting results
- A lot more to come in the next decades from LHCb Upgrade(s), ATLAS/CMS & Belle2
 - the unprecedented number of beauty baryons available with the data sample expected to be collected in the LHCb Upgrades, will allow a precision measurement programme of *CPV* observables in *b*-baryon decays to be pursued

Conclusions

Conclusions

Thank you for your attention!

mail : davide.fazzini@cern.ch

Backup

CKM angle γ : LHCb combination (II)

- LHCb is closing the sensitivity gap between direct meas. and global fits
- Δm_s is important input for *CPV* measurements in B_s decays [arXiv:2104.04421]
- New precise measurement of Δm_s and β_s [LHCB-PAPER-2020-042] are vital input for global CKM fits

- Any disagreement between the values obtained with the two fit methods would imply physics beyond the SM:
 - new particles or mediators exchanged in loops

Observation of $\Lambda_b^0 \rightarrow D^0 \rho K^-$ decay and measurement of CP asymmetry [Phys. Rev. D 104 112008]

- Dataset corresponding to an integrated luminosity of 9 fb⁻¹ (2011-18) at $\sqrt{s} = 7$, 8 and 13 TeV
- Study of $\Lambda_b^0 \to DpK^-$ with $D \to K^{\pm}\pi^{\mp}$, since D is a superposition of D^0 and \bar{D}^0 states
- $\Lambda_b^0 \to [K^+\pi^-]_D p K^-$ is suppressed by a factor $R \approx \left| \frac{V_{cb} V_{us}^*}{V_{ub} V_{cs}^*} \right|^2 = 6.0$
- Branching fractions ratio *R* and CP asymmetry A_{CP} measured both in full phase space and in a restricted phase space region $m^2(K^-p) < 5 \ GeV^2/c^4$ (enhanced sensitivity to γ due to $D\Lambda^*$)

Search for *CP* violation in $\Xi_b^- \rightarrow p K^+ K^-$ decays [Phys Rev D 104 052010]

- Dataset corresponding to an integrated luminosity of 5 fb⁻¹ (2011-16) at $\sqrt{s} = 7$, 8 and 13 TeV
- First amplitude analysis of baryon decays allowing for CPV effects
- Only candidates in the m(pK⁻K⁻) signal region of ± 40 MeV around the Ξ_b⁻ mass are retained for the amplitude analysis
- Results consistent with no CPV effects

Component	$A^{CP}(10^{-2})$ (stat, syst)
Σ(1385)	$-27\pm34\pm73$
Λ(1405)	$-1\pm24\pm32$
Λ(1520)	$-5\pm9\pm8$
Λ(1670)	$3\pm14\pm10$
Σ(1775)	$-47\pm26\pm14$
Σ(1915)	$11\pm26\pm22$

Entries / (23.125 MeV)

140

120

100

LHCb

160 1 2 fb⁻¹

- Data

6000

Total fit

----- *Z*, signal

 Ω_{1}^{-} signal

----- Part. rec. bkgd.

 $\Xi_{i} \rightarrow pK^{-}\pi^{-}$ cross-feed.

6400

 $m(pK^{K})$ [MeV]

CKM angle γ : direct CPV in $B^{\pm} \rightarrow DK^{\mp}(D \rightarrow K^{\pm}\pi^{\mp})$ [JHEP04(2021)081]

- Many CP observables are measured:
 - 9 from fully reconstructed decays
 - 19 from partially reconstructed decays (missing neutral particle)
 - Measured decay rates: $\Gamma \propto |r_D e^{i\delta_D} + r_B e^{i(\delta_B \gamma)}|^2$ $\overline{\Gamma} \propto |r_D e^{i\delta_D} + r_B e^{i(\delta_B + \gamma)}|^2$
 - Measured CP asymmetries: $A_{CP} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin(\gamma)}{r_B^2 + r_D^2 + 2r_B + r_D \cos(\delta_B + \delta_D) \cos(\gamma)}$

- Significant difference in peaks height!
- $A_{CP} = (45.1 \pm 2.6)\%$ fully rec., $A_{CP} = (71.7 \pm 28.6)\%$ partially rec.

TDE