

Kaon rare decays: theory overview

Siavash Neshatpour

IP2I, Lyon Based on 2206.14748 and 2311.04878 in collaboration with G. D'Ambrosio, A. Iyer, F. Mahmoudi

> Italian Workshop on Physics at High Intensity (WIFAI 2023) 8-10 November 2023

Rare kaon decays

- Take place via FCNC
- Suppressed in the Standard Model
- Interesting probe of New Physics
 Generation Requires reliable prediction in the SM
- SD dominated
 - $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L \rightarrow \pi^0 \nu \nu$ (golden channels)

- LD dominated
 - $K_L \rightarrow \mu \mu, K_S \rightarrow \mu \mu, K^+ \rightarrow \pi^+ \ell \ell$ and $K_L \rightarrow \pi^0 \ell \ell, ...$

Rare kaon decays

- Take place via FCNC
- Suppressed in the Standard Model
- Interesting probe of New Physics
 - \hookrightarrow Requires reliable prediction in the SM

Weak effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{td} \frac{\alpha_e}{4\pi} \sum_k C_k^\ell O_k^\ell$$

 $O_{L}^{\ell} = (\bar{s}\gamma_{\mu}P_{L}d)(\bar{\nu}_{\ell}\gamma^{\mu}(1-\gamma_{5})\nu_{\ell}), \quad O_{9}^{\ell} = (\bar{s}\gamma_{\mu}P_{L}d)(\bar{\ell}\gamma^{\mu}\ell), \quad O_{10}^{\ell} = (\bar{s}\gamma_{\mu}P_{L}d)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$

NP contributions: $C_k \to C_k^{SM} + \delta C_k$

$K^{\!+}\!\!\rightarrow\!\!\pi^{\!+}\nu\nu$

$$\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{\kappa_+ (1 + \Delta_{\mathrm{EM}})}{\lambda^{10}} \frac{1}{3} s_W^4 \sum_{\ell} \left[\mathrm{Im}^2 \left(\lambda_t C_L^\ell \right) + \mathrm{Re}^2 \left(-\frac{\lambda_c X_c}{s_w^2} + \lambda_t C_L^\ell \right) \right] \quad (\lambda_i = V_{is} V_{id})$$

- top loop: $C_{L,\mathrm{SM}}^\ell = -X_{\mathrm{SM}}(x_t)/s_W^2$ NNLO QCD and 2-loop EW

[Buchalla, Buras,'99; Misiak, Urban '99, Broad et al. '10]

- charm contribution: $X_c = \lambda^4 [P_c^{SD} + \delta P_{c,u}^{LD}]$ SD: NNLO QCD and NLO EW; LD: ChPT
- O_L matrix elements known from $K_{3\ell}$ branching ratios ightarrow included in κ_+
- $\Gamma_{\rm SD}/\Gamma\!>\!\!90\%$

LD:[Isidori et al.'05] [Mescia, Smith '17]

SD:[Buras et al. '05; Brod et al. '08]

$K^{\!+}\!\!\rightarrow\!\!\pi^{\!+}\nu\nu$

$$\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{\kappa_+ (1 + \Delta_{\mathrm{EM}})}{\lambda^{10}} \frac{1}{3} s_W^4 \sum_{\ell} \left[\mathrm{Im}^2 \left(\lambda_t C_L^\ell \right) + \mathrm{Re}^2 \left(-\frac{\lambda_c X_c}{s_w^2} + \lambda_t C_L^\ell \right) \right] \quad (\lambda_i = V_{is} V_{id})$$

• top loop: $C_{L,SM}^{\ell} = -X_{SM}(x_t)/s_W^2$ NNLO QCD and 2-loop EW

[Buchalla, Buras,'99; Misiak, Urban '99, Broad et al. '10]

- charm contribution: $X_c = \lambda^4 [P_c^{SD} + \delta P_{c,u}^{LD}]$ SD: NNLO QCD and NLO EW; LD: ChPT
- O_L matrix elements known from $K_{3\ell}$ branching ratios ightarrow included in κ_+
- $\Gamma_{\rm SD}/\Gamma > 90\%$

$$\begin{split} & \mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})_{\mathrm{SM}} = (7.86 \pm 0.61) \times 10^{-11} & \text{[D'Ambrosio, Iyer, Mahmoudi, SN '22]} \\ & \mathrm{Sources \ of \ uncertainty:} \\ & \mathrm{SD} \sim 2\%, \quad \mathrm{LD} \sim 3\%, \quad \mathrm{Parametric} \sim 7\% \end{split}$$

SD:[Buras et al. '05; Brod et al. '08] LD:[Isidori et al.'05]

[Mescia, Smith '17]

$K^{\!+}\!\!\rightarrow\!\!\pi^{\!+}\nu\nu$

$$\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{\kappa_+ (1 + \Delta_{\mathrm{EM}})}{\lambda^{10}} \frac{1}{3} s_W^4 \sum_{\ell} \left[\mathrm{Im}^2 \left(\lambda_t C_L^\ell \right) + \mathrm{Re}^2 \left(-\frac{\lambda_c X_c}{s_w^2} + \lambda_t C_L^\ell \right) \right] \quad (\lambda_i = V_{is} V_{id})$$

• top loop: $C_{L,SM}^{\ell} = -X_{SM}(x_t)/s_W^2$ NNLO QCD and 2-loop EW

[Buchalla, Buras,'99; Misiak, Urban '99, Broad et al. '10]

- charm contribution: $X_c = \lambda^4 [P_c^{SD} + \delta P_{c,u}^{LD}]$ SD: NNLO QCD and NLO EW; LD: ChPT
- O_L matrix elements known from $K_{3\ell}$ branching ratios ightarrow included in κ_+
- $\Gamma_{\rm SD}/\Gamma > 90\%$

BR $(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{\rm SM} = (7.86 \pm 0.61) \times 10^{-11}$ [D'Ambrosio, Iyer, Mahmoudi, SN '22] Sources of uncertainty: SD ~ 2%, LD ~ 3%, Parametric ~ 7%

 $BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (7.73 \pm 0.61) \times 10^{-11}$ [Brod, Gorbahn, Stamou '21] $BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.60 \pm 0.42) \times 10^{-11}$ [Buras, Venturini '22] LD:[Isidori et al.'05]

SD:[Buras et al. '05; Brod et al. '08]

[Mescia, Smith '17]

$K^+ \rightarrow \pi^+ \nu \nu$

$$\begin{aligned} &\operatorname{BR}(K^{+} \to \pi^{+} \nu \bar{\nu}) = \frac{\kappa_{+} (1 + \Delta_{\mathrm{EM}})}{\lambda^{10}} \frac{1}{3} s_{W}^{4} \sum_{\ell} \left[\operatorname{Im}^{2} \left(\lambda_{t} C_{L}^{\ell} \right) + \operatorname{Re}^{2} \left(-\frac{\lambda_{c} X_{c}}{s_{w}^{2}} + \lambda_{t} C_{L}^{\ell} \right) \right] \\ &\operatorname{BR}(K^{+} \to \pi^{+} \nu \bar{\nu})_{\mathrm{NA62}} = (10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11} & \text{[D'Ambrosio, Iyer, Mahmoudi, SN '22]} \\ &\operatorname{BR}(K^{+} \to \pi^{+} \nu \bar{\nu})_{\mathrm{SM}} = (7.86 \pm 0.61) \times 10^{-11} & \text{[NA62 Coll., Cortina Gil et al. '21]} \end{aligned}$$

$$K^+ \rightarrow \pi^+ \nu \nu$$

$$\begin{aligned} & \mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{\kappa_+ (1 + \Delta_{\mathrm{EM}})}{\lambda^{10}} \frac{1}{3} s_W^4 \sum_{\ell} \left[\mathrm{Im}^2 \left(\lambda_t \underline{C_L^{\ell}} \right) + \mathrm{Re}^2 \left(-\frac{\lambda_c X_c}{s_w^2} + \lambda_t \underline{C_L^{\ell}} \right) \right] \\ & \mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})_{\mathrm{NA62}} = (10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11} & \text{[D'Ambrosio, lyer, Mahmoudi, SN '22]} \\ & \mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})_{\mathrm{SM}} = (7.86 \pm 0.61) \times 10^{-11} & \text{[NA62 Coll., Cortina Gil et al. '21]} \end{aligned}$$

New Physics effects:

$$K^+ \rightarrow \pi^+ \nu \nu$$

$$\begin{aligned} & \mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{\kappa_+ (1 + \Delta_{\mathrm{EM}})}{\lambda^{10}} \frac{1}{3} s_W^4 \sum_{\ell} \left[\mathrm{Im}^2 \left(\lambda_t \underline{C_L^{\ell}} \right) + \mathrm{Re}^2 \left(-\frac{\lambda_c X_c}{s_w^2} + \lambda_t \underline{C_L^{\ell}} \right) \right] \\ & \mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})_{\mathrm{NA62}} = (10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11} \quad \text{[D'Ambrosio, lyer, Mahmoudi, SN '22]} \\ & \mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})_{\mathrm{SM}} = (7.86 \pm 0.61) \times 10^{-11} \quad \text{[NA62 Coll., Cortina Gil et al. '21]} \end{aligned}$$

New Physics effects:

 $K_L \rightarrow \pi^0 \, \nu \nu$

$$BR(K_L \to \pi^0 \nu \bar{\nu}) = \frac{\kappa_L}{\lambda^{10}} \frac{1}{3} s_w^4 \sum_{\ell} Im^2 \left(\lambda_t C_L^{\ell} \right)$$

- $C_{{\scriptscriptstyle L},{\scriptscriptstyle SM}}$ same as for $K^+{\rightarrow}\pi^+\nu\nu$
- charm contributions below 1%
- 99% SD distance

BR $(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (2.68 \pm 0.30) \times 10^{-11}$ Sources of uncertainty: SD ~ 2%, LD ~ 1%, Parametric ~ 11%

 $BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (2.59 \pm 0.29) \times 10^{-11}$ [Brod, Gorbahn, Stamou '21] $BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (2.94 \pm 0.15) \times 10^{-11}$ [Buras, Venturini '22]

[D'Ambrosio, Iver, Mahmoudi, SN '22]

 $K_L \rightarrow \pi^0 \nu \nu$

$$BR(K_L \to \pi^0 \nu \bar{\nu}) = \frac{\kappa_L}{\lambda^{10}} \frac{1}{3} s_w^4 \sum_{\ell} Im^2 \left(\lambda_t \underline{C_L^{\ell}} \right)$$

 $BR(K_L \to \pi^0 \nu \bar{\nu})_{KOTO} < 3.0 \times 10^{-11} \text{ at } 90\% \text{ CL}$ [KOTO Coll., Ahn et al. '18] $BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (2.68 \pm 0.30) \times 10^{-11}$ [D'Ambrosio, Iyer, Mahmoudi, SN '22]

New Physics effects:

 $K^+ \rightarrow \pi^+ \ell \ell$ is long distance dominated, mediated by single photon exchange $K^+ \rightarrow \pi^+ \gamma^*$

LFUV in $K^+ \rightarrow \pi^+ \ell \ell$

 $K^+ \rightarrow \pi^+ \,\ell \,\ell$ is long distance dominated, mediated by single photon exchange $K^+ \rightarrow \pi^+ \gamma^*$

LFU predicts the same form factors a and b, for $\ell = e, \mu$

 $a^{ee} \neq a^{\mu\mu}$ indicates LFUV NP: $a^{\mu\mu}_{+} - a^{ee}_{+} = -\sqrt{2} \operatorname{Re} \left[V_{td} V^*_{ts} \left(\frac{C^{\mu}_{9} - C^{e}_{9}}{C^{e}_{9}} \right) \right]$ [Crivellin et al. '16]

LFUV in $K^+ \rightarrow \pi^+ \ell \ell$

 $K^+ \rightarrow \pi^+ \,\ell \,\ell$ is long distance dominated, mediated by single photon exchange $K^+ \rightarrow \pi^+ \gamma^*$

$K_L \! ightarrow \! \mu \, \mu$

 $K_L \rightarrow \mu \mu$ is long distance dominated, mediated by two photons via $K_L \rightarrow \gamma^* \gamma^*$

$$BR(K_L \to \mu\bar{\mu}) = \tau_L \frac{f_K^2 m_K^3 \beta_{\mu}}{16\pi} \left| N_L^{LD} - \left(\frac{2m_{\mu}}{m_K} \frac{G_F \alpha_e}{\sqrt{2\pi}}\right) Re \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^{\ell} \right] \right|$$

$$\underset{i_k}{\overset{i_k}{\longrightarrow}} LD >> SD \underbrace{\underset{i_k, c, i}{\overset{i_k}{\longrightarrow}}}_{\overset{i_k, c, i}{\longrightarrow}} \frac{d}{\mu}$$

$$N_L^{LD} \propto (\chi_{disp} + i\chi_{abs}) \longrightarrow N_L^{LD} = \pm [0.54(77) - 3.95i] \times 10^{-11} (GeV)^{-2}$$

$$[D'Ambrosio et al. '86 '97;$$

$$Gomez Dumm, Pich '98;$$

$$Knecht et al. '99;$$

$$[sidori, Unterdorfer '03]$$

$K_L \! ightarrow \! \mu \, \mu$

 $K_L \rightarrow \mu \mu$ is long distance dominated, mediated by two photons via $K_L \rightarrow \gamma^* \gamma^*$

$$BR(K_L \to \mu\bar{\mu}) = \tau_L \frac{f_K^2 m_K^3 \beta_{\mu}}{16\pi} \left| N_L^{LD} - \left(\frac{2m_{\mu}}{m_K} \frac{G_F \alpha_e}{\sqrt{2\pi}}\right) Re \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^{\ell} \right] \right|$$

$$M_L^{LD} \to SD = \frac{\pi m_{\mu,\alpha,i}}{\pi m_{\mu,\alpha,i}}$$

$$N_L^{LD} \propto (\chi_{disp} + i\chi_{abs}) \to N_L^{LD} = \pm [0.54(77) - 3.95i] \times 10^{-11} (GeV)^{-2}$$

$$[D'Ambrosio et al. '86 '97;$$

$$Gomez Dumm, Pich '98;$$

$$Knecht et al. '99;$$

$$[sidori, Unterdorfer '03]$$

Prediction depends on the sign of $A(K_L \rightarrow \gamma \gamma)$ contribution determining the effect of the SD-LD interference

$K_L \rightarrow \mu \mu$

 $K_L \rightarrow \mu \mu$ is long distance dominated, mediated by two photons via $K_L \rightarrow \gamma^* \gamma^*$

Prediction depends on the sign of $A(K_L \rightarrow \gamma \gamma)$ contribution determining the effect of the SD-LD interference

$$BR(K_L \to \mu\bar{\mu})_{SM} = \begin{cases} LD(+) : (6.82^{+0.77}_{-0.24} \pm 0.04) \times 10^{-9} \\ LD(-) : (8.04^{+1.46}_{-0.97} \pm 0.09) \times 10^{-9} \end{cases}$$

$$\begin{split} & \underbrace{\mathsf{S}}_{\mathbf{m}}^{\mathsf{S}} \overset{\mathsf{8.0}}{\mathsf{P}} & \underbrace{\mathsf{R.0}}_{\mathbf{7.5}} & \underbrace{\mathsf{R.0}}_{\mathbf{7.5}} & \underbrace{\mathsf{R.0}}_{\mathbf{6.5}} & \underbrace{\mathsf{R$$

$K_L \rightarrow \mu \mu$

 $K_L \rightarrow \mu \mu$ is long distance dominated, mediated by two photons via $K_L \rightarrow \gamma^* \gamma^*$

0.4

[PDG]

-10

-5

 $BR(K_L \to \mu \bar{\mu})_{exp} = (6.84 \pm 0.11) \times 10^{-9}$

5

 δC_{10}

0

10

15

20

determining the effect of the SD-LD interference

$$BR(K_L \to \mu\bar{\mu})_{SM} = \begin{cases} LD(+) : (6.82^{+0.77}_{-0.24} \pm 0.04) \times 10^{-9} \\ LD(-) : (8.04^{+1.46}_{-0.97} \pm 0.09) \times 10^{-9} \end{cases}$$

$K_L \rightarrow \pi^0 \ell \ell$

[Dambrosio et al. '98;Isidor et al. '04;Mescia, Smith, Trine '06]

	$C^\ell_{ m dir}$	C_{int}^{ℓ}	$C_{\rm mix}^\ell$	$C^\ell_{\gamma\gamma}$
$\ell = e$	$(4.62 \pm 0.24)(w_{7V}^2 + w_{7A}^2)$	$(11.3 \pm 0.3) w_{7V}$	14.5 ± 0.5	≈ 0
$\ell=\mu$	$(1.09 \pm 0.05)(w_{7V}^2 + 2.32w_{7A}^2)$	$(2.63 \pm 0.06) w_{7V}$	3.36 ± 0.20	5.2 ± 1.6
			[Mescia, Sm	ith, Trine '06]

$$w_{7V} = \frac{1}{2\pi} \operatorname{Im} \left[\frac{\lambda_t^{sd}}{1.407 \times 10^{-4}} C_9 \right], \quad w_{7A} = \frac{1}{2\pi} \operatorname{Im} \left[\frac{\lambda_t^{sd}}{1.407 \times 10^{-4}} C_{10} \right]$$

 $K_L \rightarrow \pi^0 \ell \ell$

[Dambrosio et al. '98;Isidor et al. '04;Mescia, Smith, Trine '06]

$$w_{7V} = \frac{1}{2\pi} \operatorname{Im} \left[\frac{\lambda_t^{sd}}{1.407 \times 10^{-4}} C_9 \right], \quad w_{7A} = \frac{1}{2\pi} \operatorname{Im} \left[\frac{\lambda_t^{sd}}{1.407 \times 10^{-4}} C_{10} \right]$$

$$\begin{aligned} & \mathrm{BR}^{\mathrm{SM}}(K_L \to \pi^0 e\bar{e}) = 3.46^{+0.92}_{-0.80} \left(1.55^{+0.60}_{-0.48}\right) \times 10^{-11} & \mathrm{BR}^{\mathrm{exp}}(K_L \to \pi^0 e\bar{e}) < 28 \times 10^{-11} \\ & \mathrm{BR}^{\mathrm{SM}}(K_L \to \pi^0 \mu \bar{\mu}) = 1.38^{+0.27}_{-0.25} \left(0.94^{+0.21}_{-0.20}\right) \times 10^{-11} & \mathrm{BR}^{\mathrm{exp}}(K_L \to \pi^0 \mu \bar{\mu}) < 38 \times 10^{-11} \\ & \mathrm{[D'Ambrosio, lyer, Mahmoudi, SN '22]} & \mathrm{[KTeV '00 and '03]} \end{aligned}$$

at 90% CL

at 90% CL

 $K_L \rightarrow \pi^0 \ell \ell$

Global analysis

All observables

Rare kaon observables

Observable	SM prediction	Experimental results
$BR(K^+ \to \pi^+ \nu \bar{\nu})$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$
${\rm BR}(K^0_L\to\pi^0\nu\nu)$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 3.0 \times 10^{-9}$ @90% CL
$LFUV(a_+^{\mu\mu} - a_+^{ee})$	0	-0.014 ± 0.016
$BR(K_L \to \mu \mu) (+)$	$(6.82^{+0.77}_{-0.29}) \times 10^{-9}$	$(6.84 \pm 0.11) \times 10^{-9}$
$BR(K_L \to \mu \mu) (-)$	$(8.04^{+1.47}_{-0.98}) \times 10^{-9}$	(0.04 ± 0.11) × 10
$BR(K_S \to \mu \mu)$	$(5.15 \pm 1.50) \times 10^{-12}$	$< 2.1(2.4) \times 10^{-10} @90(95)\%$
$BR(K_L \to \pi^0 ee)(+)$	$(3.46^{+0.92}_{-0.80}) \times 10^{-11}$	$< 28 \times 10^{-11} @00\%$ CL
$BR(K_L \rightarrow \pi^0 ee)(-)$	$(1.55^{+0.60}_{-0.48}) \times 10^{-11}$	< 20 × 10 @5070 OL
$BR(K_L \to \pi^0 \mu \mu)(+)$	$(1.38^{+0.27}_{-0.25}) \times 10^{-11}$	$< 38 \times 10^{-11} @ 00\%$ CL
$BR(K_L \to \pi^0 \mu \mu)(-)$	$(0.94^{+0.21}_{-0.20}) \times 10^{-11}$	< 50 × 10 @5070 OL

We assume NP contributions of the charged and neutral leptons related to each other by the $SU(2)_{L}$ gauge symmetry and we work in the chiral basis

$$\delta C_L^\ell \equiv \delta C_9^\ell = -\delta C_{10}^\ell$$

 $\delta C_L^e \neq \delta C_L^\mu = \delta C_L^\tau$

Bounds from individual observables:

Coloured regions: 68% CL measurements Dashed lines: 90% upper limits

All observables

Rare kaon observables

Observable	SM prediction	Experimental results
$\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$
${\rm BR}(K^0_L\to\pi^0\nu\nu)$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 3.0 \times 10^{-9}$ @90% CL
$LFUV(a_+^{\mu\mu} - a_+^{ee})$	0	-0.014 ± 0.016
$BR(K_L \to \mu \mu) (+)$	$(6.82^{+0.77}_{-0.29}) \times 10^{-9}$	$(6.84 \pm 0.11) \times 10^{-9}$
$BR(K_L \to \mu \mu) (-)$	$(8.04^{+1.47}_{-0.98}) \times 10^{-9}$	(0.04 ± 0.11) × 10
$BR(K_S \to \mu \mu)$	$(5.15 \pm 1.50) \times 10^{-12}$	$< 2.1(2.4) \times 10^{-10} @90(95)\%$
$BR(K_L \to \pi^0 ee)(+)$	$(3.46^{+0.92}_{-0.80}) \times 10^{-11}$	$< 28 \times 10^{-11}$ @90% CL
$BR(K_L \rightarrow \pi^0 ee)(-)$	$(1.55^{+0.60}_{-0.48}) \times 10^{-11}$	< 20 × 10 @3070 CH
$BR(K_L \to \pi^0 \mu \mu)(+)$	$(1.38^{+0.27}_{-0.25}) \times 10^{-11}$	$< 38 \times 10^{-11}$ @90% CL
$BR(K_L \to \pi^0 \mu \mu)(-)$	$(0.94^{+0.21}_{-0.20}) \times 10^{-11}$	

We assume NP contributions of the charged and neutral leptons related to each other by the $SU(2)_{L}$ gauge symmetry and we work in the chiral basis

$$\delta C_L^\ell \equiv \delta C_9^\ell = -\delta C_{10}^\ell$$

 $\delta C_L^e \neq \delta C_L^\mu = \delta C_L^\tau$

Bounds from individual observables:

Coloured regions: 68% CL measurements Dashed lines: 90% upper limits

All observables / Global fit

Fit (with Superlso public program) for positive LD contributions to $K_L \rightarrow \mu \mu$

Lighter / darker purple region: 68% / 95% CL of global fit

Main constraining observables $BR(K^+ \rightarrow \pi^+ \nu \nu)$ followed by $BR(K_L \rightarrow \mu \mu)$

Prospects for future measurements

Numerical values used in the projections

Observable	SM prediction	Experimental results	NA62 final
$BR(K^+ \to \pi^+ \nu \bar{\nu})$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$	20%
${\rm BR}(K^0_L\to\pi^0\nu\nu)$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 3.0 \times 10^{-9}$ @90% CL	current
$LFUV(a_{+}^{\mu\mu}-a_{+}^{ee})$	0	-0.014 ± 0.016	current
$BR(K_L \to \mu \mu) (+)$	$(6.82^{+0.77}_{-0.29}) \times 10^{-9}$	$(6.84 \pm 0.11) \times 10^{-9}$	current
$BR(K_L \to \mu \mu) (-)$	$(8.04^{+1.47}_{-0.98}) \times 10^{-9}$	$(0.04 \pm 0.11) \times 10$	current
$BR(K_S \to \mu\mu)$	$(5.15 \pm 1.50) \times 10^{-12}$	$< 2.1(2.4) \times 10^{-10}$ @90(95)% CL	current
$BR(K_L \to \pi^0 ee)(+)$	$(3.46^{+0.92}_{-0.80}) \times 10^{-11}$	$< 28 \times 10^{-11}$ @90% CL	current
$\frac{\mathrm{BR}(K_L \to \pi^0 ce)(-)}{\mathrm{BR}(K_L \to \pi^0 ce)(-)}$	$(1.55^{+0.60}_{-0.48}) \times 10^{-11}$		Current
$BR(K_L \to \pi^0 \mu \mu)(+)$	$(1.38^{+0.27}_{-0.25}) \times 10^{-11}$	$< 38 \times 10^{-11}$ @90% CL	current
$\mathrm{BR}(K_L \to \pi^0 \mu \mu)(-)$	$(0.94^{+0.21}_{-0.20}) \times 10^{-11}$		current

Numerical values used in the projections

Observable	SM prediction	Experimental results	NA62 final	HIKE Phase 2	HIKE P2 + KOTO-II
${\rm BR}(K^+ \to \pi^+ \nu \bar{\nu})$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$	20%	5%	5%
${\rm BR}(K^0_L\to\pi^0\nu\nu)$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 3.0 \times 10^{-9}$ @90% CL	current	current	20%
$LFUV(a_+^{\mu\mu} - a_+^{ee})$	0	-0.014 ± 0.016	current	± 0.007	± 0.007
$BR(K_L \to \mu \mu) (+)$	$(6.82^{+0.77}_{-0.29}) \times 10^{-9}$	$(6.84 \pm 0.11) \times 10^{-9}$	$\operatorname{current}$	1%	1%
$BR(K_L \to \mu \mu) (-)$	$(8.04^{+1.47}_{-0.98}) \times 10^{-9}$	$(0.04 \pm 0.11) \times 10$			
$BR(K_S \to \mu\mu)$	$(5.15 \pm 1.50) \times 10^{-12}$	$< 2.1(2.4) \times 10^{-10}$ @90(95)% CL	current	current	current
$BR(K_L \to \pi^0 ee)(+)$	$(3.46^{+0.92}_{-0.80}) \times 10^{-11}$	$< 28 \times 10^{-11} @90\%$ CL	current	20%	20%
$BR(K_L \to \pi^0 cc)(-)$	$(1.55^{+0.60}_{-0.48}) \times 10^{-11}$	< 20 × 10 000000			
$BR(K_L \to \pi^0 \mu \mu)(+)$	$(1.38^{+0.27}_{-0.25}) \times 10^{-11}$	$< 38 \times 10^{-11} @90\%$ CL	current	20%	20%
$BR(K_L \to \pi^0 \mu \mu)(-)$	$(0.94^{+0.21}_{-0.20}) \times 10^{-11}$	< 50 × 10 ⊗50 /0 OL	Current	2070	2070

Projection A

Observables already measured are kept, others assumed to be match SM, all with target precision of HIKE (+ KOTO-II)

Projection B

All measurements give current best-fit point with target precision of HIKE (+ KOTO-II)

NA62 final precision

Projection A

Observables already measured are kept, others assumed to be match SM, all with target precision of HIKE (+ KOTO-II)

Projection B

All measurements give current best-fit point with target precision of HIKE (+ KOTO-II)

HIKE without KOTO

Projection A

Observables already measured are kept, others assumed to be match SM, all with target precision of HIKE (+ KOTO-II)

All measurements give current best-fit point with target precision of HIKE (+ KOTO-II)

HIKE without KOTO – impact of $K^+ \rightarrow \pi^+ \nu \nu$

HIKE without KOTO

HIKE without KOTO – impact of $K^+ \rightarrow \pi^+ \nu \nu$

HIKE without KOTO – impact of $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L \rightarrow \pi^0 \ell \ell$

Main constraining observables BR($K^+ \rightarrow \pi^+ \nu \nu$) followed by BR($K_L \rightarrow \pi^0 e^+ e^-$)

HIKE without KOTO

HIKE with KOTO

HIKE with KOTO – impact of $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L \rightarrow \pi^0 \nu \nu$

HIKE with KOTO – impact of $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L \rightarrow \pi^0 \nu \nu$

- Rare kaon decays offer interesting information on short distance physics, even those which are long-distance dominated
- Hike (Phase 1 and 2) offers excellent sensitivity to new physics
- KOTO-II measurement of $K_L \rightarrow \pi^0 \nu \nu$ will improve this sensitivity
- Measurement of $K_L \rightarrow \pi^0 \ell \ell$, especially in the electron sector gives a very effective probe of new physics

$$\operatorname{BR}(K_S \to \mu\bar{\mu}) = \tau_S \frac{f_K^2 m_K^3 \beta_\mu}{16\pi} \left\{ \beta_\mu^2 \left| N_S^{\mathrm{LD}} \right|^2 + \left(\frac{2m_\mu}{m_K} \frac{G_F \alpha_e}{\sqrt{2}\pi} \right)^2 \operatorname{Im}^2 \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^\ell \right] \right\}$$

$$N_S^{\text{LD}} = (-2.65 + 1.14i) \times 10^{-11} \, (\text{GeV})^{-2}$$

$$BR(K_S \to \mu \bar{\mu})^{SM} = (5.15 \pm 1.50) \times 10^{-12}$$

Asymmetric theoretical uncertainty of $K_L \rightarrow \mu \mu$

Asymmetric theoretical uncertainty of $K_L \rightarrow \pi^0 \ell \ell$

Fit (with Superlso public program) for negative LD contributions to $K_L \rightarrow \mu \mu$

Fit (with Superlso public program) for negative LD contributions to $K_L \rightarrow \mu \mu$

