

Status and prospects for rare B decays at Belle II Elisa Manoni (INFN Perugia)

on behalf of the Belle II collaboration

Second Italian Workshop on the Physics at High Intensity November 9th 2023

Rare B decays and new physics searches

Purely leptonic B decays and $b \rightarrow s/(d)$ transitions are suppressed in the Standard Model (SM)

- FCNC prohibited at tree level
- SM branching fraction \in [10⁻⁴, 10⁻⁷], ~10-30% uncertainties
- more accurate precision on angular observables, asymmetries, and ratios

Deviation from SM foreseen in New Physics (NP) scenarios, e.g. new mediators, new sources of missing energy for $b \rightarrow s \nu \bar{\nu}$

Electroweak and radiative penguin modes:

Purely leptonic B decays:

- \bullet suppressed by CKM matrix-element $|V_{ub}|$ and helicity factor « $m²_ℓ$
- $\mathcal{B}(B\rightarrow \tau \nu)_{SM} \sim 10^{-4}$ (15%-20% uncertainty)

Rare B decays and new physics searches

Missing energy modes

Maximise purity : hadronic tag analyses Maximise efficiency : inclusive tag analyses

- Missing energy modes: challenging due to un-reconstructed neutrinos
- Exploit knowledge of the initial energy to measure missing energy
- Different tagging methods are feasible, e.g. $B^+ \rightarrow K^+ \nu \bar{\nu}$

Experimental challenges (I)

Machine-learning based reconstruction algorithm [[Comp.Soft.BigSci. 3, 6 \(2019\)](https://link.springer.com/article/10.1007/s41781-019-0021-8)]: $\varepsilon_{\text{tag}} \sim O(1\%)$

No explicit tag reconstruction: $\epsilon_{\rm tag} \sim 100\%$

Experimental challenges (II)

- Contamination from $e^+e^- \rightarrow q\bar{q}$ ("continuum") events
	- modelling validated by using data taken 60 MeV below the $Y(4S)$ resonance

- exploit "event-shape" variables
- for background suppression, usually combine them in multivariate tools

Elisa Manoni, INFN Perugia 11/09/2023

Radiative B decays

Elisa Manoni, INFN Perugia 11/09/2023

Inclusive B**→**Xs

- Sensitive to new physics $[JHEP11(2012)036]$ $[JHEP11(2012)036]$, Ey spectrum allows to determine m_b and other non-perturbative parameters $[PRL 127, 102001]$ $[PRL 127, 102001]$
- Reconstruct a High energy photon in the recoil of a hadronic B_{tag}
	- fully inclusive X_s reconstruction: avoid hadronic uncertainties
- Background yield from fit to B_{tag} kinematic distribution, in E_{γ} ^B bins; subtracted from data to obtain the signal spectrum
- Partial branching fractions in E_{γ} ^B bins

- Perspectives:
	- for hadronic tagged analysis, ≥ 10 ab⁻¹ to reach theoretical precision $({\sim}5\%)$
	- additional measurements with semileptonic and inclusive tag also feasible at Belle II

er (similar) statistical (systematic) precision wrt r [[PRD 77 \(2008\) 051103](https://arxiv.org/abs/0711.4889)] milar statistics

 $E_{\gamma}B$ = photon energy in the signal B rest frame

$\mathsf{B}\rightarrow \rho \gamma$

- Probing NP in $b \rightarrow dy$ transitions using Belle+Belle II (711+362 fb-1) dataset
- Extract signal yield from a simultaneous fit to di-pion mass, $\rho\gamma$ mass with B energy replaced by beam energy, difference between expected and observed B energy
	- Results: $\mathcal{B}(B^+\to\rho^+\gamma)=(12.9^{+2.0+1.3}_{-1.9-1.2})\times10^{-7}$, $\mathcal{B}(B^0 \to \rho^0 \gamma) = (7.5^{+1.3}_{-1.3}{}_{-0.8}^{+1.0}) \times 10^{-7}$, $A_{\rm CP} (B^+ \to \rho^+ \gamma) = (-8.4^{+15.2+1.3}_{-15.3-1.4})\%$ $A_{\rm I}(B \to \rho \gamma) = (11.0^{+11.2+7.1+3.8}_{-11.7-6.3-3.9})\,\%$,

Most precise measurement to date Isospin asymmetry consistent with zero *(*~2 σ level departure from null-asymmetry reported in previous Belle analysis [[PRL 101, 111801 \(2008\) 411\]](https://arxiv.org/pdf/0804.4770.pdf) on 600 fb-1*)*

Elisa Manoni, INFN Perugia 11/09/2023

Missing energy modes

$$
\!{2\over {\tau}}\left[1-{m_{\tau}^2\over m_B^2}\right]^2 f_B^2 |V_{ub}|^2 \tau_{B^+}
$$

B**→**

- Probe for non-SM effects at tree level and provide complementary measurement of IV_{ub}| wrt semileptonic b→uℓν final states
	- SM BF expectation: $\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B m^2}{8 \pi^2}$
	- \sim 10⁻⁴, with 15%-20% uncertainty (depending on f_B and V_{ub} values)
- Experimental status
	- tagged analysis from Belle and BaBar, stat limited
	- BF average: $(1.09 \pm 0.24) \times 10^{-4}$ [\(PDG\)](https://pdglive.lbl.gov/Particle.action?init=0&node=S041&home=MXXX045)
- Perspectives (hadronic-tagged analysis):
	- ultimately limited by by knowledge of KL veto efficiency, Btag efficiency, peaking backgrounds
	- can benefit from semileptonic and inclusive tagging approach

b \rightarrow str searches

- Motivation: SM BF at 10^{-7} level (~10% uncertainty), Enhancements foreseen in NP models scenarios explaining $R(D({*}))$ or recent $B\rightarrow K\nu\nu$ excess
- Experimental status: first result from Belle on K^{0} mode published in 2023, no result on K+ mode with full Belle statistics

• Perspectives:

- "baseline": Belle analysis as starting point + increasing statistics
	- "improved": 50% increase in signal efficiency for the same background level
	- further improvements by using semileptonic tag and charged mode

[arXiv:1011.0352](https://arxiv.org/abs/2207.06307)

• Belle II will provide updates with improved methods also on $b \rightarrow s \tau \ell$ transitions

Elisa Manoni, INFN Perugia 11/09/2023

Missing energy modes: $B^+ \rightarrow K^+ \nu \bar{\nu}$

- b→s transition prohibited at tree level in the SM
	- branching fraction: $(5.6 \pm 0.4) \times 10^{-6}$ [[PRD 107, 119903 \(2023\)\]](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.119903)
- Can receive contribution from NP
	- new mediators, new invisible particles in the final state

Motivation and experimental status

Theory:

- Challenges:
	- low branching fraction with large background
	- no peak two neutrinos leads to no good kinematic constraint
- Signal not observed from previous measurements

Experiment:

Elisa Manoni, INFN Perugia 11/07/2023

ITA is the main analysis, the driver for the final precision Almost statistical independent samples

Updated search for B⁺→K⁺ ν ^{*ī*} on full Belle II dataset $(362 fb - 1)$

Hadronic Tag analysis (HTA)

Elisa Manoni, INFN Perugia 11/07/2023

Analysis flow in a nutshell

Except for the tagging method, ITA and HTA are kept as similar as possible in all steps In what follows details of the ITA will be given, highlighting relevant differences of HTA

Signal kaon reconstruction and basic event selection

• Signal kaon reconstruction:

- identified charged kaon; K-ID efficiency $\sim 68\%$, 1.2% K/ π mis-ID rate
- In ITA, best signal Kaon chosen according to smallest mass squared of the neutrino pair (q^2_{rec}) :

$$
q_{\text{rec}}^2 = s/(4c^4) + M_K^2 - \sqrt{s}E_K^*/c^4
$$

• Require missing energy to be in the central part of the detector

missing momentum vector

Background suppression and signal extraction strategy

Background suppression:

- Use "event-shape", kinematics, vertexing, missing energy information
- two successive BDTs (BDT1 and BDT2) in ITA, one single BDT in HTA

• Measure signal strength $\mu = B_{\text{measured}}/$ B SM,short-distance With B SM,short-distance = 4.97 x 10⁻⁶, by fitting classifier output and q²rec (ITA only)

Signal extraction:

Background validation (I)

- qq contamination: check modelling using offresonance data
	- •40% difference in data/MC normalisation
	- •correct for shape and normalization differences

- Semileptonic $B\rightarrow D^{(*)}($ \rightarrow KX) $\ell\nu$ decays
	- resonances well reproduced in simulation
	- dedicated systematic uncertainties on decay branching fractions, enlarged for $B\rightarrow D^{\star\star}\ell\nu$ decays

Background validation (II)

- Hadronic B→D(*)K+ decays: validated by studying pion and lepton-enriched sidebands
	- q^2_{rec} fit to validate size of $B\rightarrow X_c(\rightarrow K_L+X)$, data favours 1.3x scaling-up

- B^+ + K+K_LK_L: O(10-5) branching ratio, K_L escaping electromagnetic calorimeter mimic missing neutrinos
	- model according to BaBar analysis [PRD 85, 112010 (2012)] and validate using $B^+ \rightarrow K^+K_S K_S$

Signal efficiency Validation

- Use B^+ \rightarrow J/ $\psi(\mu\mu)$ K⁺ control channel
	- "embedding" procedure: remove muons from reconstructed objects to mimic neutrinos and replace K+ kinematics from simulated signal events to match signal topology (both in data and MC)
- Data/MC efficiency ratio: 1.00 ± 0.03 → good agreement
- 3% is included as signal shape systematic uncertainty

Closure test: measuring a known and rare mode

- Measure $B^+ \rightarrow \pi^+ K^0$ branching fraction by minimally adapting inclusive analysis strategy, e.g.
	- request pion-ID instead of K-ID
	- \bullet different q^2 _{rec} bins to increase sensitivity
- Result: $BF(B^{+}\to \pi^{+}K^{0}) = (2.5 \pm 0.5) \times 10^{-5}$ consistent with PDG $[(2.38 \pm 0.08) \times 10^{-5}]$

Systematics

spoiler: statistical uncertainty =1.1

- Dominant sources of systematic uncertainties for ITA :
	- \bullet $B\overline{B}$ background normalisation
	- Limited size of simulation sample for the fit model
	- knowledge of B+→K+K_LK_L decay rate and modelling of $B^+ \rightarrow D^{**} \ell \nu$ decays
- In HTA, dominant sources are background normalisation, simulation sample size, and systematic on mismodelling of extra-photon multiplicity.

 $\mu = \mathsf{B}_{\mathsf{measured}}/\mathsf{B}_{\mathsf{SM},\mathsf{short\text{-}distance}}$ with $B_{SM,short-distance} = 4.97 \times 10^{-6}$

Results

Compatibility between data and fit result from pseudo-experiments: 47% (61%) for ITA (HTA)

Elisa Manoni, INFN Perugia 11/07/2023

$1.0(\text{stat}) \pm 0.9(\text{syst})$

 $1.4 \pm 0.5 {\rm (stat)} ^{+0.5}_{-0.4} {\rm (syst)}] \times 10^{-5} \rm [$

Combination:
$$
\mu = 4.7 \pm
$$

$$
\mathcal{B}(B^+\to K^+\nu\bar\nu)=[2.
$$

 \bullet significance wrt null hypothesis: 3.6 σ

 \bullet significance wrt SM: 2.8 σ

First evidence of $B^+ \rightarrow K^+ \nu \bar{\nu}$

- ITA result:
	- in agreement with previous hadronic-tag and inclusive measurements
	- 2.4σ tension with BaBar semileptonic-tag analysis
	- comparable precision wrt previous best measurements
- HTA result:
	- in agreement with all previous measurements
	- most precise result with hadronic tag method
- Overall good compatibility: p-value \sim 30%

Comparison with previous measurements

Conclusions

- Belle II can probe NP by studying pure leptonic B decays and b→s transitions
	- results shown for inclusive and exclusive radiative decays on partial Belle II dataset or full BelleII+Belle sample
	- prospects for B decay modes with τ in the final states
	- first evidence for $B^+ \rightarrow K^+ \nu \bar{\nu}$ with Belle II data
- Ongoing analysis on topics touched today with full Belle II (+ Belle) dataset
- Data taking to resume early in 2024

Elisa Manoni, INFN Perugia 11/09/2023

Extra-slides

Reconstruction and basic event selection (I)

ITA

- No explicit tag reconstruction: $\varepsilon \sim 100\%$
- Signal candidate: identified charged kaon
	- K-ID efficiency \sim 68%, 1.2% K/ π mis-ID rate
- Best signal Kaon chosen according to smallest q²rec:

$$
q_{\text{rec}}^2 = s/(4c^4) + M_K^2 - \sqrt{s}E_K^*/c^4
$$

- pick true K 96% of the times
- no bias in the procedure, x-checked by selecting best kaon at random

HTA

- Hadronic tag reconstruction, as in $R(X\tau/\ell)$
- \bullet same signal kaon reconstruction but q^2_{rec} requirement (lower candidate multiplicity thanks to B_{tag} reconstruction)

qq background studies

- \bullet ~ 40% of background events in signal region from qq events
- KKMC generator used to generate qq pairs, PYTHIA simulate hadronization, and EVTGEN for decay modelling
- Check modelling by comparing off-resonance data and $q\bar{q}$ simulation
	- 40% difference in data/MC normalisation (used as systematic uncertainty)
	- shape corrected by event-by-event data-drive corrections [[J. Phys.: Conf. Ser. 368 012028\]](https://iopscience.iop.org/article/10.1088/1742-6596/368/1/012028)

Semileptonic B**→**D(*)(**→**K+X)ℓ decays

- Semileptonic B decays generally well modelled in EVTGEN, modes with D** less well known
- Inspect invariant mass of signal K and any other track in the ROE
	- also used at background suppression stage
- Resonances well reproduced in simulation
- Dedicated systematic uncertainties on decay branching fractions, enlarged for B→D**ℓ decays
	- impact of uncertainties on form factors found to be negligible

B⁺→K⁺K_LK_L

- Most signal-like background:
	- $O(10^{-5})$ branching ratio, K_L escaping electromagnetic calorimeter mimic missing neutrinos
- Study K_L detection efficiency in the calorimeter from $e^+e^-\rightarrow \gamma \varphi(\rightarrow K_L K_S)$ control sample: correct for 17% inefficiency in data wrt simulation in the whole K_L energy range
- Model B+→K+KLKL according to BaBar analysis [PRD 85, [112010 \(2012\)\]](https://arxiv.org/abs/1201.5897)
- Validate the modelling on $B^+ \rightarrow K^+K_S K_S$

Hadronic B**→**D(*)K+ decays (I)

- Study pion-enriched control sample $(B^+ \rightarrow \pi^+ X)$
- Observed data excess in q^2_{rec} distribution above D threshold
	- $D^0 \rightarrow K^0/K^0X$ and $D^0 \rightarrow K^0\overline{K}^0X$ simulated by EVTGEN have significant uncertainties
- Excess fixed by increasing $B \rightarrow D \rightarrow K_L$ component by +30%
	- \bullet derived from 3-component fit to q^2_{rec}
- Procedure successfully validated on electron- and muonenriched control samples
- 10% systematic uncertainties to cover differences in scaling factor from the different sidebands

Hadronic B**→**D(*)K+ decays

• Result of 3-component q^2_{rec} fit to estimate scaling of $B\rightarrow D\rightarrow K_L$ component in electron- and muon-enriched control sample to validate the procedure establish from the pion-enriched

The scaling factors found in the three sidebands are within 10% \rightarrow considered a systematic uncertainty

control sample study

Hadronic B**→**D(*)K+ decays (II)

Classifier output for pion-enriched sample well reproduced when incorporating $B\rightarrow D\rightarrow K_L$ scale factor

BDT2 output in control samples

off-resonance data simultaneously fitted with on-resonance data in the signal strength extraction fit

classifier output for the pion-enriched sample

Consistency checks: one example

- Excellent agreement when splitting ITA sample according to lepton multiplicity (probing "semileptonic tag" vs "hadronic tag")
- Tension in "Sum(charges)" for ITA consistent with statistical fluctuation

Divide data sample into pairs of statistically independent datasets, according to various features

Good stability for all splittings for both analyses

Kaon ID requirement validation

- K-ID efficiency and $K \rightarrow \pi$ mis-ID rate from high statistics $D^{*+}\to \pi D^{0}(\to K\pi)$
- Analysis-specific validation using $B\rightarrow D(K\pi)$ h $(h = K, \pi)$
	- remove D daughters to mimic signal topology and apply nominal selection
- Data/MC ratio of relative abundance of B→DK and $B\rightarrow D\pi$ from ΔE fit: 1.03±0.09

Signal efficiencies as a function of q2

• Efficiencies in the signal regions ad a function of the generated q^2

• Much lower efficiency in HTA w.r.t. ITA, but smaller variation in q^2

Systematic uncertainties for HTA analysis

Signal region: $n(BDT2) > 0.92$

Most sensitive region: η (BDT2) > 0.98

Post fit distributions (ITA)

- Good description of classifier output
- Some difference in q^2_{rec} : not conclusive due to coarse binning choice, dictated from experimental resolution

Good description of q^2 and extra neutral energy in the calorimeter (most discriminant

Post fit distributions (HTA)

Signal region: $n(BDTH) > 0.6$

variable)

 $b \rightarrow s \tau \ell$

 $b \rightarrow s \gamma$ (I) $B \rightarrow X_s \gamma$:

- \bullet ~ 5% theoretical unit. on BF, for $E y > 1.4$ GeV
- Dominant systematics from knowledge of residual background
- "baseline" = Belle II performances, "improved" = improved π^0 veto modeling

[arXiv:2210.10220](https://inspirehep.net/literature/2167323)
TABLE I: Results of the partial branching fraction measurements. The right-hand part of the table shows the main contributions to the systematic uncertainty. Signal efficiency and background modelling uncertainties are correlated (see Sections 9.2 and 9.3).

[arXiv:1011.0352](https://arxiv.org/abs/2207.06307)

Table 5: Projected fractional uncertainties of the $B \to X_s \gamma$ branching fraction measurement for various E^B_γ thresholds. The systematic uncertainty is presented for a baseline scenario when the remaining background is known to the 10% level, and an improved scenario, when the background is known to the 5% level.

$b \rightarrow s \gamma$ (II)

$B\rightarrow \rho \gamma$ systematics uncertainties

Table 6: Projected statistical and systematic (absolute) uncertainties of relevant observables from $B \to K^*\gamma$ decays.

$B\rightarrow K^{\star}\gamma$ projections

 $\frac{\Delta}{A_C}$ A_C $\Delta\measuredangle$

Elisa Manoni, INFN Perugia 11/09/2023

Belle II Preliminary

Source	$\mathcal{B}_{\rho^+\gamma} \times 10^8$	$\mathcal{B}_{\rho^0 \gamma} \times 10^8$	$A_{\rm I}$	$A_{\rm CP}$
Reconstruction eff.	4.1	1.2		1.4% 0.5%
Selection eff.	8.8	3.3		4.0% 0.6%
Fixed PDF parameters	1.1	2.6		1.8% 0.2%
Signal shape	4.6	3.0		3.1% 0.5%
Histogram PDF	0.8	$1.5\,$		1.1% 0.6%
$K^*\gamma$ yield	3.4	5.4		3.2\% 0.1\%
$B\overline{B}$ peaking yield	2.2	0.8		0.9% 0.2%
$A_{\rm CP}$ of peaking background	0.1	0.0		0.1% 1.0%
Number of BB	1.7	1.4		0.3% 0.1%
Other parameters	3.9	3.5		3.9% 0.0%
Total	12.4	8.6		7.6% 1.5%

[arXiv:1011.0352](https://arxiv.org/abs/2207.06307)

