

Rare decays in LHCb

Marianna Fontana INFN Bologna

WIFAI 2023 - 9/11/2023 Roma

Flavour Changing Neutral Currents

- FCNC processes ($b \rightarrow s, d$ and $c \rightarrow u$) are forbidden at tree level in the SM
- In the SM they are allowed at loop level (penguin and box diagrams)
 - **Charm** decays further *suppressed* (GIM mechanism)
- Sensitive to New Physics: new heavy particles can significantly contribute and affect decay rates, angular distributions, and rate asymmetries

Observables

Branching fractions

$J/\psi(1S)$ beauty $\psi(2S)$ $\mathcal{C}_7^{(\prime)}$ $\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$ 1 $C_9^{(\prime)}$ and $C_{10}^{(\prime)}$ $C_7^{(\prime)}C_9^{(\prime)}$ interference Long distance contributions from $C\overline{C}$ above open charm threshold $\rho | \omega$ ŋ $\frac{d\Gamma}{dq^2}$ charm

Angular observables

- Affected by $c\bar{c}$ loops

CP violation

Amplitude analysis

 Information about the composition of the decay

LFU test

• Clean

- Experimentally simple
- Affected by form-factors and $c\bar{c}$ loops

- Theoretically cleaner
- Probe structures of potential NP

Branching fractions

• Measurement in q^2 bins

 $\frac{d\mathscr{B}}{dq^2} = \frac{\mathscr{B}(norm)}{q_{max}^2 - q_{min}^2} \cdot \frac{N_{sig}}{N_{norm}} \cdot \frac{\epsilon_{norm}}{\epsilon_{sig}}$

- Beauty: remove J/ψ region and use it as normalisation channel → cancellation of systematic uncertainties
- Exploit $\psi(2S)$ as control mode to check procedure

• **Charm**: conceptually similar approach in $D^+ \rightarrow h\ell^+\ell^-$, exploiting the ϕ resonance

$b \to s \ell \ell$ branching fractions

- Since Run 1 branching fractions are systematically below SM predictions, particularly at low q^2 (tensions at $1 3\sigma$ level)
- SM predictions exhibit sizeable hadronic uncertainties
- Work on updates with full data sample

[PRD 107 (2023) 119903]

Lepton Flavour Universality

- LFU exactly unity in the SM, differences due to lepton mass difference
- QED corrections ~1%
- Testable using ratios of branching fractions, where hadronic uncertainties cancel
- Data in excellent agreement with lepton flavour universality

$$R_{K,K^*} = \frac{\mathscr{B}(B^{(+,0)} \to K^{(+,*0)}\mu^+\mu^-)}{\mathscr{B}(B^{(+,0)} \to K^{(+,*0)}e^+e^-)}$$

Electrons wrt muons have:

- Lower trigger efficiency (ECAL)
- Worse resolution (bremsstrahlung)
- More challenging bkg sources

Angular binned analysis

- <u>Tensions in angular analyses</u>
- Coherent pattern seen in exclusive $b \rightarrow s\mu^+\mu^-$
- Prefer shifts of effective couplings
- Dedicated branching fraction measurements and angular analyses of *di-electron* modes ongoing

See also talk of A. <u>Smolkovic</u> on Global analysis of rare $b \rightarrow d$ and $b \rightarrow s$ decays_@ImplicationsWorkshop

Unbinned amplitude analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

- Disentangling hadronic contributions requires work from theory and experiment
- Difficult to calculate reliably from first principles, but progress from theory:
 - Form-factors are systematically improved on the lattice [PRD 107 (2023) 1]
 - More precise estimation of charm-loop effect [JHEP 09 (2022) 133]
- Can we access the non-local hadronic contribution ("charm-loop") from data?

Unbinned amplitude analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

- Disentangling hadronic contributions requires work from theory and experiment
- Difficult to calculate reliably from first principles, but progress from theory:
 - Form-factors are systematically improved on the lattice [PRD 107 (2023) 1]
 - More precise estimation of charm-loop effect [JHEP 09 (2022) 133]
- Can we access the non-local hadronic contribution ("charm-loop") from data?

Non-local contributions

0

data

data

92

Results: Wilson coefficients

[LHCb-PAPER-2023-032] [LHCb-PAPER-2023-033] *in preparation*

- Results consistent with the pattern suggested by global analyses
- ...but non-local contributions are found to dilute the tension with the SM observed

Data-SM tension ~ 1.9 σ in C_9 , up to 1.5 σ in C_{10} Combined tension ~ 1.4 σ

Results: differential BF and P_5'

[LHCb-PAPER-2023-032] [LHCb-PAPER-2023-033] *in preparation*

• Lower BF compared to LHCb Run 1 results, due to updated normalisation

- Very good agreement with binned results
- Impact of $c\bar{c}$ up to 20%

Prospects for Run1+2

LFU tests

• Exclusive

- R_ϕ with $B_s o \phi \ell \ell \ell$
- R_{Λ} with $\Lambda_b \to \Lambda \ell \ell \ell$: first measurement
- R_{pK} with $\Lambda_b \to pK\ell\ell\ell$: update with 2017+2018 data
- Non-exclusive multi-body decays
 - $R_{K\pi\pi}$ with $B^+ \to K\pi\pi\ell\ell$
 - $B^0 \to K \pi \ell \ell$ (outside K^* resonance)
- High q^2 region in $R_{K^{(*)}}$ and R_{ϕ}
 - Difficult background to control: $\psi(2S)$ + part. reconstructed + misID

Angular observables

• $B \rightarrow K^* e^+ e^-$: challenging due to bin migration and bkg modelling

- $B \rightarrow K^* \mu^+ \mu^-$ extra fit parameters: massive leptons and scalar amplitudes
- Binned (more bins and full dataset) vs
 Unbinned (study different models)

Rare charm decays

LFV, LNV, BNV FCNC Radiative VMD 10⁻¹³ 10⁻¹² 10⁻¹⁴ 10⁻⁷ 10⁻¹¹ 10⁻¹⁰ 10⁻⁹ 0 10^{-15} 10⁻⁸ 10⁻⁶ 10⁻⁵ 10^{-4}

Charm systems offer a unique opportunity to search for NP

- Only bound system made of up-type quarks, complementary sensitivity to BSM couplings wrt K and B decays
- All processes involving loops are highly suppressed in the SM:
 - Charm meson oscillation probability very low
 - CPV effect tiny ($\leq O(10^{-3})$)
 - Extremely rare decays ($\leq O(10^{-9})$)

Story of rare charm decays in LHCb

- 2015: First observation of the decay D⁰ → K⁻π⁺μ⁺μ⁻ in the ρ⁰ − ω region of the dimuon mass spectrum
 Phys. Lett. B 757 (2016) 558
- 2015: Search for the lepton-flavour violating decay $D^0 \rightarrow e^{\pm}\mu^{\mp}$
- 2017: Rarest observed charm meson decays $D^0 \rightarrow KK\mu\mu$ and $D^0 \rightarrow \pi\pi\mu\mu$ with branching fraction ~10⁻⁷ Phys. Rev. Lett. 119, 181805 (2017)
- 2018: Search for the rare decay $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$
- 2021: Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons
- 2021: Angular analysis of $D^0 \rightarrow \pi \pi \mu \mu$ and $D^0 \rightarrow K K \mu \mu$ decays and search for CP violation Phys. Rev. Lett. 128, 221801 (2022)
- 2022: Search for rare decays of D^0 mesons into two muons arXiv:2212.11203v1 [hep-ex] 21 Dec 2022
- 2023: Search for $D^*(2007)^0 \to \mu^+\mu^-$ in $B^- \to \pi^-\mu^+\mu^-$ decays arXiv:2304.01981v2 [hep-ex] 5 Apr 2023

Search for leptonic rare charm decays

$D^0 \to \mu^+ \mu^-$ [PRL 131 (2023) 041804]

- Very rare decay: FCNC + helicity suppression
- Very clean experimental signature
- Minimal hadronic uncertainties
- Intermediate two-photon state: $\mathscr{B} \sim 10^{-13}$ in the SM $\rightarrow \mathscr{B} < 10^{-11}$ (Belle constraint from $D^0 \rightarrow \gamma \gamma$) [PRD 93, 051102(R)]
- Using $D^{*+} \to D^0 \pi^+$ decays with $D^0 \to \pi^+ \pi^$ and $D^0 \to K^- \pi^+$ as normalisation
- No significant signal observed:

220Candidates / (5.0 MeV/c² 200 LHCb $D^0 \rightarrow \mu^+ \mu^-$ 180 $6 \, \text{fb}^{-1}$ Combinatorial 160 $\rightarrow \pi^{-} \pi^{+}$ $0.666 \leq BDT \leq 1.0$ 140 $\rightarrow K^- \pi^+$ 120100 80 1850 1800 21501900 1950 2000 2100 $m(\mu^+\mu^-)$ [MeV/c²]

 $D^{*0} \rightarrow \mu^+ \mu^-$ [EPJC 83, 666 (2023)]

- $\mathscr{B} \sim 10^{-19}$ in the SM [JHEP 11 (2015) 142]
- Using $B^- \to D^{*0}\pi^-$ decays and $B^- \to J/\psi K^-$ as normalisation
- Simultaneous fit to $m(\mu^+\mu^-)$ and $m(\pi^+\mu^+\mu^-)$
- No significant signal observed: $\mathscr{B}(D^{*0} \to \mu^+ \mu^-) < 2.6 \times 10^{-8} \text{ at } 90 \ \% \text{ CL}$

 $\mathscr{B}(D^0 \to \mu^+ \mu^-) < 3.1 \times 10^{-9}$ at 90 % CL

Prospects for Run1+2

- Semileptonic decays: ongoing analysis in $D^+_{(s)} \to h\ell\ell$ and $\Lambda_c \to p\ell\ell$
- First analyses looked for signal only in the nonresonant regions [PRD 97, 091101 (2018)] [JHEP 06 (2021) 044]
- Another method exploited for $D^0 \rightarrow 4$ body decays studies the resonant region with clean null tests:
 - CP asymmetry
 - Angular observables

- More challenging: measure branching fraction and A_{CP} in radiative decays $D^0 \to V\gamma \ (V = \phi, \, \rho, K^*)$
 - Complement Belle measurements [JHEP 08 (2017) 091]
 - Room for NP with A_{CP} up to 10% with BF SM-like [PRL 118, 051801 (2017)]
- Final states with electrons:
 - Search for $D^0 \rightarrow hhe^+e^-$
 - First LFU test with $D^+_{(s)} \to \phi(\to \ell\ell)\pi^+$

16

A word on kaon rare decays

Almost infinite strangeness production at LHC (kaon xs ~ 1.2 barn)

 $K_{SL}^0 \to \mu^+ \mu^- \mu^+ \mu^-$ [PRD 108 (2023) L031102] $K_{\rm S}^0 \to \mu^+ \mu^-$ [PRL 125, 231801 (2020)] • SM prediction $K_S^0 \sim 10^{-14}, K_L^0 \sim 10^{-13}$ • SM prediction $\mathscr{B} \sim 10^{-12}$ • Sensitive to different physics than $K_L \rightarrow \mu^+ \mu^-$ Full dataset analysed No significant signal observed: Full Run 1+2 dataset analysed $\mathscr{B}(K_{S}^{0} \to \mu^{+}\mu^{-}\mu^{+}\mu^{-}) < 5.1 \times 10^{-12}$ No significant signal observed: $\mathscr{B}(K_{S}^{0} \to \mu^{+}\mu^{-}) < 2.1 \times 10^{-10} \text{ at } 90\% \text{ CL}$ $\mathscr{B}(K_L^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 2.3 \times 10^{-9}$ 5 MeV/c² $\Sigma^+ \rightarrow p \mu^+ \mu^-$ LHCb $\Sigma^+ \to p \mu^+ \mu^-$ [PRL 120, 221803 (2018)] Data Full model • 4.1 σ evidence with Run 1 data $\Sigma^+ \rightarrow p \mu^+ \mu^-$ Candidates / Background $\mathscr{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.1^{1.8}_{1.3}) \times 10^{-8}$ Run 2: possible observation and investigation of the full differential decay rate 1200 1300 1400

Run 2 (2016-2018) data analysis ongoing: $\Sigma^+ \rightarrow p\mu^+\mu^-$, $K_S \rightarrow (\gamma, \pi^0)\mu\mu$, ...

Prospects for Run 3

The upgraded LHCb experiment

- Most of the studies presented are limited by statistics
- Major upgrade of all subdetectors
- Higher instantaneous luminosity

 $\mathcal{L} = 2 \times 10^{33} \ cm^{-2} \ s^{-1}$

 \rightarrow more collisions per bunch crossing (from 1 to 5 visible interaction), while keeping the same performance

- 100% of the readout electronics replaced
- New data acquisition system and data center

 Cannot effectively trigger on heavy flavour using hardware signatures

- Trigger for many decays with hadrons and electrons saturated already at Run 1-2 luminosity
- **Solution:** fully software trigger with event reconstruction in real time at 40MHz

CERN-LHCC-2012-007

Expected improvements relevant for FCNC

Muons

• Removal of the L0 trigger \rightarrow softer p_T requirements: recover soft muons for strange, charm and tau physics

Vertexing

- Expected to improve the decay time resolution by 10% wrt Run1-2
- Better track/vertex association
 - \rightarrow lower combinatorial background

Electrons

- Removal of the L0 trigger → large efficiency increase and better kinematic overlap with the muon samples
- Calorimeter reconstruction and electronID algorithms heavily improved compared to Run1/2

The golden channel: $B_{(s)} \rightarrow \mu^+ \mu^-$

- B_s mode well established, hint for B^0
- Plans for next measurements:
 - $\mathcal{B}(B^0 \to \mu\mu)/\mathcal{B}(B^0_s \to \mu\mu)$
 - $\mathscr{B}(B^0_s) \to \mu \mu \gamma$
 - Effective lifetime and time-dependent CP asymmetry
- The improved vertexing and momentum resolution will help in keeping the combinatorial background under control
- f_s/f_d will probably be the dominant uncertainty with the Upgrade II detector (300 fb⁻¹)

[PRL128, (2022) 041801]

Observable	Current LHCb	Upgrade I		Upgrade II
	$(up to 9 fb^{-1})$	$(23{ m fb}^{-1})$	$(50{\rm fb}^{-1})$	$(300{ m fb}^{-1})$
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$\rightarrow \mu^{+}\mu^{-}$) 69% [40, 41]	41%	27%	11%
$S_{\mu\mu}~(B^0_s ightarrow\mu^+\mu^-)$				0.2

Impact on rare charm

- General gain from L0 removal
- Better kinematic overlap of different modes
- Dedicated new trigger lines for better misID control
 - Potential new limits on branching ratios* Upgrade 1, 2022-2030, and Upgrade 2, 2030+:

Mode	Run1-2 $(1-9 \text{ fb}^{-1})$	Upgrade1 (50fb^{-1})	Upgrade2 $(300 {\rm fb}^{-1})$
$D^0 ightarrow \mu^+ \mu^-$	6.2×10^{-9} 3.1 × 10 ⁻⁹	4.2×10^{-10}	$1.3 imes 10^{-10}$
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	$6.7 imes 10^{-8}$	10^{-8}	$3 imes 10^{-9}$
$D_s^+ \to K^+ \mu^+ \mu^-$	$2.6 imes 10^{-8}$	10^{-8}	3×10^{-9}
$\Lambda_c^+ \to p \mu^+ \mu^-$	$9.6 imes 10^{-8}$	1.1×10^{-8}	4.4×10^{-9}
$D^0 \to e^{\pm} \mu^{\mp}$	$1.3 imes 10^{-8}$	10^{-9}	4.1×10^{-9}

A.Contu - Towards ultimate precision in Flavour Physics, Durham (2-4 April 2019)

Statistical precision* on asymmetries:

Mode	Run1-2 (1-9 f	b^{-1}) Upgrade1 (50 fb ⁻¹)	¹) Upgrade2 (300fb^{-1})
$D^+ \to \pi^+ \mu^+ \mu^-$		0.2~%	0.08~%
$D^0 \to \pi^+\pi^-\mu^+\mu^-$	3.8 % 2%	1 %	0.4~%
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$		0.3~%	0.13~%
$D^0 \to K^+ \pi^- \mu^+ \mu^-$		$12 \ \%$	5 %
$D^0 \to K^+ K^- \mu^+ \mu^-$	11-% 6%	4 %	1.7 %

A.Contu - Towards ultimate precision in Flavour Physics, Durham (2-4 April 2019)

Towards the ultimate precision

Very challenging goal:

- Operate at an instantaneous luminosity x7 larger than Run 3 conditions \rightarrow PU~40
- Retain the same performance and the flexibility provided by the software trigger
- Accumulate 300 fb^{-1} by the end of Run 6
- Detector features:
 - Very similar layout as current spectrometer with major changes to all detectors
 - Remove HCAL, add TORCH (for low momentum PID), magnet stations and muon shields
 - Use of timing information to resolve primary vertices in the same bunch crossings
 - New ECAL with improved energy, position resolution and improved sensitivity at low E_T

What we can achieve with $300 \ \mathrm{fb}^{-1}$

FTDR-LHCbUII, LHCC 2021-012

SM

flavio v2.2.0

0.4

0.6

Constraints at 2σ

 $B^0 \rightarrow K^{*0}e^+e^-$ 23 fb⁻

 $\rightarrow \phi \gamma 23 \text{ fb}^-$

 $\rightarrow \phi \gamma 300 \text{ fb}^{-1}$

 $\Lambda_b \rightarrow \Lambda \gamma 23 \text{ fb}^{-1}$

 $A_b \rightarrow A\gamma 300 \text{ fb}^{-1}$

→ K^{*0}e⁺e⁻ 300 fb⁻

-0.2

-0.6

-0.4

 $\mathcal{B}(B \to X_s \gamma)$

LHCB-PUB-2018-009

Strange decays

- K_s^0 decays unique to LHCb
- Sensitivity on K_L^0 decays might still compete with dedicated kaon experiments

High precision SM test thanks to gains on electrons and better neutral PID

0.0

 ${\rm Re}(C_{7}'/C_{7})$

0.2

Discriminate between different NP models through the comparison of the angular distribution of dielectron and dimuon final-states

What about radiative decays?

- Similar prons and cons as electrons → higher level quantities to be optimised to recover efficiencies
- Benefits from higher statistics and potential for large impact:
- Im C_7^{eff} : time integrated CP asymmetry, $A_{CP}(B^0 \to K^* \gamma) \sim 2 \text{Im}C_7^{eff} \text{Im}\Delta C_7$
- C'_7 : currently dominated by $B^0 \to K^* e^+ e^-$ but nice complementarity with other modes and the direct determination of the photon polarisation

[Phys. Rev. D105 (2022) L051104]

Conclusion

- Rare decays constitutes a unique environment to look for NP
- LHCb is giving major contributions in the beauty, but also charm and strange sectors
- Many LHCb measurements are world's best, but there is still space for improvement with respect to SM predictions and to reach NP sensitivity
- New studies or update of some measurements are still expected with Run 1+2 data
- LHCb Upgrade I (Run 3-4) is currently taking data and will allow to push some boundaries, but rarer modes and differential BR measurements still expected to be statistically limited by the end of Run 4
- The full potential of the detector in flavour physics will be exploited with the Upgrade II (Run 5 and beyond)

Thanks for you attention!

Backup

Analysis overview

[LHCb-PAPER-2023-032] [LHCb-PAPER-2023-033] in preparation

- - `differential decay rate + invariant B mass to separate signal from combinatorial background
- Large number of signal parameters
 - ▶ Wilson coefficients: C_9 , C_{10} , C'_9 , C'_{10} [floated] + C_7 , C'_7 [fixed to SM]
 - local FF: [constrained to LCSR + latticeQCD] JHEP 01 (2019) 150, PoS LATTICE2014 (2015) 372
 - non-local hadronic parameters $\mathcal{H}_{\lambda}(q^2)$ (see next slides)
 - S-wave (FFs + relative magnitude&phase)

Results: form-factors

Results: charm-loop matrix elements

[LHCb-PAPER-2023-032] [LHCb-PAPER-2023-033] *in preparation*

• Fit results compatible, some discrepancies in the imaginary parts

 $\Lambda_b \to \Lambda(1520)\mu^+\mu^-$

- Previous measurement of the branching fraction of the ground state [JHEP 06 (2015) 115]
- New measurement of the $\Lambda(1520)$ in the *pK* spectrum
- Agreement with theory in high q^2 region
- Significant disagreement in the low q^2 region

[PRL 131 (2023) 151801]

stat. \pm syst. $\pm \Lambda_b \rightarrow pK^- J/\psi$ and $J/\psi \rightarrow \mu^+ \mu^-$

q^2 interval $[{\rm GeV}^2\!/c^4]$	$N_{A(1520)\mu^+\mu^-}$	$\frac{d\mathcal{B}(\Lambda_b^0\to\Lambda(1520)\mu^+\mu^-)}{dq^2}~[10^{-8}{\rm GeV}^{-2}c^4]$
0.1 - 3.0	96 ± 18	$1.89 \pm 0.35 \pm 0.19 \pm 0.36$
3.0 - 6.0	138 ± 18	$2.42\pm 0.32\pm 0.17\pm 0.45$
6.0 - 8.0	65 ± 14	$1.58 \pm 0.36 \pm 0.16 \pm 0.30$
11.0 - 12.5	59 ± 14	$2.07 \pm 0.47 \pm 0.26 \pm 0.39$
15.0 - 17.0	12 ± 5	$0.57 \pm 0.24 \pm 0.13 \pm 0.11$
1.1–6.0	175 ± 21	$1.95 \pm 0.23 \pm 0.16 \pm 0.37$

Amplitude analysis of $\Lambda_b \to p K \gamma$

LHCb-PAPER-2023-036 in preparation

- $\Lambda_b \to pK\ell\ell$ deeply investigated in LHCb:
 - LFU measurement R_{pK} [JHEP 05 (2020) 040]
 - Branching fractions [PRL 131 (2023) 151801]
 - CP violation measurement [JHEP 06 (2017) 108]
- Hard to interpret due to poor knowledge of the pK spectrum
- We can gain information in terms of resonance structure:
 - Measurement with $\Lambda_b \to pKJ/\psi$ with the discovery of a new state $P_c(4450)$
 - $\Lambda_b \rightarrow p K \gamma$ gives access to heavier states with $m(pK) > 2 \text{ GeV}/c^2$
- Amplitude analysis: final decay rate is the sum over Λ resonances and possible helicities
- Best model containing the Λ states with $L\leq 3$ plus a non-resonant component with $J^P=3/2$

The LHCb data flow

LHCB-FIGURE-2020-016

- Detector data @30 MHz received by O(500) FPGAs
- 2-stage software trigger, HLT1 & HLT2
- Real-time alignment & calibration
- After HLT2, 10 GB/s of data for offline processing