

µone - Perugia

CDS PREVENTIVI - LUGLIO 2023

- Tradizionalmente calcolato a partire dalle misure di sezione d'urto di produzione adronica in collisioni elettrone-positrone a basse energie
 - Principale sorgente di incertezza teorica
- Calcoli di QCD su lattice non sono mai stati competitivi fino agli ultimi risultati
 - Valore centrale del contributo adronico più alto rispetto a metodi analitici e data driven
 - Tensione con SM ridotta

Borsanyi, S., Fodor, Z., Guenther, J.N. *et al.* Leading hadronic contribution to the muon magnetic moment from lattice QCD. *Nature* **593**, 51–55 (2021).

Tracciamento preciso per l'estrazione degli angoli \rightarrow Tracker Misura dell'energia dell'elettrone in modo da aggiungere ridondanza e diminuire i contributi sistematici → ECAL

- Necessità sperimentali:
 - PID per separare muoni ed elettroni \rightarrow ECAL + μ -filter \bigcirc

 - \bigcirc
 - \bigcirc

x = 0.928, E = 130.7 GeV

 $x = 0.9, E_{a} = 88.5 \text{ GeV}$

0.2, E,= 0.5 GeV

Electron scattering angle (mrad)

 Il contributo adronico può essere misurato a partire dallo scattering elastico tra muoni ed elettroni

μ-in

µ-out

e-out

30

θ.

20

x = 0.932 E_e = 139.5

CDS PERUGIA

INFN

 Moduli 2S dell'upgrade di fase2 del tracciatore di CMS

- Risoluzione spaziale adeguata
- Stub (segmenti di traccia) invece che singoli punti
 - lettura a 40MHz

unipa

A D 1709

Il rivelatore

Attività 2022

INFN

- Primo Beam Test con una stazione completa e la possibilità di inserire il bersaglio a Ottobre 2023
 - Test del sistema di DAQ e primi tentativi di sincronizzazione tra tracker ed Ecal
 - Primi esercizi di allineamento e ricostruzione tracce e vertici

A tutti gli effetti un test beam congiunto con CMS

Grande coinvolgimento di M. Magherini nello sviluppo della sistema di DAQ e di monitoring

5 IPG-00

Measured x (cm)

 $\times 10^3$

250

200

150

100

50

- Test Run agosto/settembre 2023
 - 2 Stazioni completamente equipaggiate
 - DAQ ottimizzata per la sincronizzazione calorimetro/tracker
 - Possibilità di utilizzare una ulteriore stazione con moduli sia 2S che PS
 - Di particolare interesse per CMS, aiuta a rendere più collaborativo lo sforzo per la riuscita del test run

• I risultati che si otterranno dal Test Run sono particolarmente importanti in quanto da questi dipende l'approvazione come esperimento da parte della Commissione del SPS

Attività 2024 e Pianificazione

A D 1308

- Analisi dei dati del Test Run
- Finalizzazione sistema di DAQ
 - M. Magherini centrale in questo task
- Studio di fattibilità per l'utilizzo di moduli 1S
 - Attualmente i moduli 2S di CMS sono il rivelatore di baseline
 - Si legge la linea che in CMS è dedicata al trigger: stubs -> informazione da 2 sensori «embedded»
 - MUonE preferirebbe avere 1 unico sensore per l'informazione unidemensionale mantenendo la possibilità di leggere le «stubs» a 40MHz
 - Meno material budget, meno multiple scattering
 - C'è la possibilità di usare esattamente lo stesso modulo di CMS ma senza il secondo sensore
 - Configurazione particolare del FE: generazione di pseudo-stub giocando con i valori di soglia dei singoli canali ed eventuali maschere
 - o Sono necessarie simulazioni ad hoc per verificarne la fattibilità

Attività 2024 e Pianificazione

- I risultati del Test Run sono propedeutici all'approvazione da parte di SPS dell'esperimento
- In caso di approvazione l'obiettivo è quello di iniziare a prendere dati prima del LS3
 - Il numero di stazioni crescerà nel tempo (non ci si aspetta di averle tutte pronte per l'inizio della presa dati)
 - Cronoprogramma molto compresso
 - Molto dipende da quanti moduli CMS avrà a disposizione e quanti potrà darne a MUonE
 - La situazione non è chiara...molto dipende dalla programma di approvvigionamento di CMS che è estremamente variabile al momento
 - I moduli a MUonE verranno venduti da CMS, Perugia è in caso pronta ad aiutare CMS nella produzione di moduli 2S (siamo un centro di backup per moduli 2S nel framework di CMS)
 - Nel caso si optasse per i moduli 1S la situazione sarebbe ancora più complicata
 - CMS non li produrrebbe per MUonE che dovrebbe in quel caso occuparsi da solo della produzione → Attualmente non fattibile con le forze in gioco

• <u>1 FTE</u>

- o L. Fanò P.A. 20%
 - 80% CMS/CMS_Fase2
- A. Rossi RTDb 20%
 - 80% CMS/CMS_Fase2
- G. Baldinelli R.U. 20%
 - 80% CMS_Fase2
- C. Turrioni PostDoc INFN 20%
 - 80% CMS_Fase2
- M. Magherini PhD 20%
 - 80% CMS/CMS_Fase2

Richieste 2024

- Servizi di sezione
 - Al momento non si prevede un carico per i servizi di sezione nel 2024
- Richieste Finanziarie
 - Consumo:
 - Materiale consumo per la camera pulita ~2k€
 - Missioni
 - Missioni al CERN per meeting di collaborazione per 2/3 persone

Backup

g-2: State of the art

 a_{μ}^{EXP} = (116592089 ± 63) x 10⁻¹¹ [0.54ppm] BNL E821 a_{μ}^{EXP} = (116592040 ± 54) x 10⁻¹¹ [0.46ppm] FNAL E989 Run 1 a_{μ}^{EXP} = (116592061 ± 41) x 10⁻¹¹ [0.35ppm] WA

- Al momento si hanno due risultati in completo accordo tra di loro:
 - o E821 at BNL
 - o g-2 experiment at FNAL Run1
- g-2 continua a prendere dati e punta a migliorare la precisione di un fattore 4

Se la previsione teorica rimane la stessa senza modifiche sostanziali nel valore centrale

$$\Delta a_{\mu} = a_{\mu}(exp) - a_{\mu}(the) = 6.7\sigma$$

È possibile misurare a_µ^{HLO} direttamente ?

- Un nuovo approccio proposto: MUonE
 - $\,\circ\,\,$ Misura di $a_{\mu}{}^{\text{HLO}}$ con una elevate precisione con collisioni di muoni a 160 GeV su targhetta (µ-e scattering)
 - Studi del contributo adronico all'accoppiamento elettromagnetico, $\Delta \alpha_{had}(q2)$
 - **space-like** scattring: q² = t < 0
- Δα_{had} (t) estratta da µ-e elastic scattering usando un fascio di muoni (E~160 GeV) su traghetta a basso Z per massimizzare le collisioni con elettroni

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_0^1 (1-x) \Delta \alpha_{had}(t(x)) dx$$

$$t(x) = \frac{x^2 m_{\mu}^2}{x - 1} \quad (0 \le -t \le +\infty)$$

t : momentum trasfered in the reaction

Limiti cinematici

$$\circ$$
 0 < -t < 0.161GeV²

or

- 0< x <0.93
- MUonE misurerà ~87% dell'area
 - Modelli teorici/funzionali per estrapolare il risultato al 100% dell'area

INFN

ÓNI 🗧

Test Run: expected sensitivity on $\Delta \alpha_{had}(t)$

Expected luminosity for the Test Run: $L_{TR} = 5 \text{ pb}^{-1} \iff \sim 10^{\circ} \text{ events with } E_{e} > 1 \text{ GeV}$ $(\theta_{e} < 32 \text{ mrad})$

We will be sensitive to the leptonic running ($\Delta \alpha_{\rm lep}(t)$ < 10⁻²)

Low sensitivity to the hadronic running ($\Delta \alpha_{had}(t) < 10^{-3}$)

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} K t$$

 $K = 0.136 \pm 0.026$ (20% stat error)

16