

Trento Institute for **Fundamental Physics** and Applications

tHEEOM-RD

technology for High Efficiency Electro-Optical Modulator

CSN5 – 19 Luglio 2023 - Sezione INFN Perugia

Responsabile nazionale: Enrico Serra TIFPA

Unità partecipanti: Trento, Perugia (+Firenze)

Responsabile locale: David Vitali INFN-PG

1

Electro-Optical mechanical modulators exploiting the electro-optomechanical interaction for transduction of weak rf signals

Light is optimal for quantum communications between nodes, while **microwaves** are used for manipulating solid state quantum processors

Quantum interface between optical and microwave photons would be extremely useful: **optimal solid state qubits – optical photon transducer (Opto- electromechanical systems)**

Applications (classical domain):

- **RF high efficiency sensors in NMR KAZUYUKI TAKEDA et al. Electro-mechano**optical detection of nuclear magnetic resonance - Optica 2018
- RF EOM could integrate non-reciprocal devices (without the use of magneto-optic effect) RF-isolators/RF circulators X. W. Xu et al., Nonreciprocal conversion between microwave and optical photons in electro- optomechanical systems, Phys. Rev. A 93, 023827 (2016).

Quantum networks High-sensitive optical detection of an rf signal:

High-sensitive optical detection of a weak rf signal

I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, Phys. Rev. Applied **9**, 034031 (2018)

Theeom_RD aims at improving the device: **better membrane capacitor** ⇒

- improved transduction efficiency
- reduced added noise
- increased bandwidth
- possibility to operate in the quantum regime at ultracryogenic temperatures

SCHEME OF THE OPTO-ELECTRO-MECHANICAL MODULATOR

$$
C(\hat{x}) = C_0 + C_m(\hat{x}) = C_0 + \frac{\varepsilon_0 A_{\text{eff}}}{h_0 + \hat{x}},
$$

M. Bonaldi, A. Borrielli, G. Di Giuseppe, N. Malossi, B. Morana, R. Natali, P. Piergentili, P. M. Sarro, E. Serra, D. Vitali, in print on Entropy, 2023, Special Issue "Lectures on Recent Experimental Achievements in Quantum-Enhanced Technologies". N. Malossi et al., Phys. Rev. A 103, 033516 (2021)

3- Deposition of the Al protection laver

1- Deposition of the rf-sputtered TiN/Al layers

MAIN STEPS OF THE MICROFABRICATION PROCESS FLOW-CHART

TIPFA Trento, EKL TU Delft

2- PECVD oxide (5 um) and

5- Wet etching by BOE 7:1

PECVD SiO₂ Thermal SiO₂ TiN/Al Al Si

ASSEMBLED DEVICE

Optical image of the SiN stoichiometric nanomembrane (light blue) with the TiN layer (brown). The membrane is endowed with the on-chip shield for recoil losses (right). Detailed view of the TiN notch in the membrane electrode used for the mode identification and the component assembly

Left: Detailed view of the interaction region in the OEMM assembled device. Right: The device clamped to the OFHC copper block, and the diving PCB board used in the optical setup

Mechanical modes characterization via optical homodyne detection

a) Voltage spectral noise of the homodyne signal (blue) and the shot-noise contribution (red). The green dashed lines are the calculated frequencies from the FEM simulation.

b) Calculated mode shapes by FEM simulation, corresponding to the calculated mode frequencies present in the spectrum.

MEASUREMENT OF THE QUALITY FACTOR: TARGET VALUE ACHIEVED

Measurement of the mechanical Q-factor for different modes after the final assembling of the device. Red points correspond to measurements at $V_{DC}=0V$, the blue point corresponds to the measurement at V_{DC} =30V.

Inset: voltage spectral noise (VSN) density of the homodyne signal during the ring-down measurement of the fundamental mode (0,1)

Losses are dominated by edge losses of the SiN layer

 \Rightarrow Thickness and shape of the metal coating on a stressed membrane can be arbitrary **if patterning starts from a few microns of the membrane's edge**.

Electro–mechanical characterization of the device

Measurement of the frequency shift of the (1,1) mode as a function of the DC voltage bias. The red line is the fit of the data, \Rightarrow

average distance between the electrodes and the membrane $d = 5.12 \mu m$, (using the parameters: effective area A_{eff}= 0.075 mm²; membrane mass m_{eff}= 420 ng; unperturbed mode frequency f₀ = f₁₁ = 399587 Hz.

$$
\Delta f_m = -\frac{\epsilon_0}{8\pi^2} \frac{A_{eff}}{m_{eff} d^3 f_0} V_{DC}^2
$$

FUTURE ACTIVITIES AND PERSPECTIVES

Research keeps on going via PRIN 2022 "**Quantum transduction and sensing with opto-electromechanical systems" (PI: Unicam + INFN TIPFA + CNR-IMEM Trento)**

TECHNICAL IMPROVEMENTS

- Improving devices yield and reproducibility;
- Avoid electrical cross-talk between the membrane capacitor and the electrode (oxide passivation) for a large span of voltage biases
- Better control of the capacitor plate distance

PHYSICS AND DEVICES

- **1. "Sympathetic" cooling to the quantum ground state of an LC resonator**: laser cooling of the SiN membrane which then sympathetically cools the coupled quasi-resonat LC rf-circuit
- **2. Nonreciprocal rf-optical transduction** via interference

Ground state sympathetic cooling of the LC is possible

N. Malossi et al., Phys. Rev. A **103,** 033516 (2021)

Nonreciprocal conversion between radio-frequency and optical photons with an optoelectromechanical system

