

Politecnico

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

Performance studies of green **Resistive Plate Chamber detectors at** the CERN Gamma Irradiation Facility

Dayron Ramos López on behalf of the RPC ECOgas@GIF++ collaboration

RPCs in High Energy Physics experiments

Resistive Plate Chambers:

- Gaseous detectors
- High efficiency and time resolution
- Relatively cheap: allow to cover large areas
- Largely used for muon detection
- Fast response: used for triggering and identification purposes
- Widely employed in High Energy Physics experiments, operated with tetrafluorethane (TFE) based mixtures

Standard gas mixture TFE (C2H2F4) ~ 95% + iC4H10 ~ 4-5% + SF6 < 1%

- High density of primary ion-electrons pairs \rightarrow high RPC efficiency $oldsymbol{O}$
- **Good quenching** properties and **electronegativity** \rightarrow very **low streamer probability** $oldsymbol{O}$
- C2H2F4 and SF6 are fluorinated greenhouse gases (F-gases) with high Global Warming $oldsymbol{O}$ Potential*:
 - GWP(C2H2F4) = 1430
 - GWP(SF6) = 22800
 - $GWP_{total} = 1485$

* Global Warming Potential (GWP) measure greenhouse effect of gases if compared to CO2: GWP(CO2) = 1

GHG emissions @CERN and EU regulation

Limiting the total amount of the most important F-gases that can be sold in the EU from 2015 onwards and phasing them down in steps to one-fifth of 2014 sales in 2030.

- **Banning the use** of F-gases where less harmful alternatives are widely available.
- **Preventing emissions** of F-gases from existing equipment by requiring checks, proper servicing and recovery

CERN GHG emissions from particle detectors

- Main contributor is C2H2F4 used for ALICE, ATLAS and CMS RPC systems
- **Emissions mainly due to leaks** at detector level (fragile connectors) in ATLAS and CMS
- **Campaign** for leaks reparation in LS2

New gas mixtures

- Requirements: low GWP, low toxicity, not flammable and detector performance comparable with standard one
- In industrial applications C2H2F4 is being replaced with HydroFluoro-Olefins (HFOs)
 - the replacement of C2H2F4 with HFO moves the operating voltage at much higher values (es. >13kV for 2mm gap)
 - the addition of CO2 helps in decreasing the WP

	R134a	HFO-1234ze	CO ₂	i-C4H10	SF ₆	GWP	CO ₂ e (g/l)
	(%)	(%)	(%)	(%)	(%)		
STD	95.2			4.5	0.3	1485	6824
ECO2		35	60	4	1	476	1522
ECO3		25	69	5	1	527	1519
Density (g/l)	4.68	5.26	1.98	2.69	6.61		
GWP	1430	7	1	3	22800		

NIST Chemistry WebBook, the NIST Standard Reference Database Number 69, https://webbook.nist.gov/chemistry/, retrieved on April 2, 2023

Hydro-Fluoro-Olefin (HFO)

fluorine-containing

GWP with respect to CO₂, and their CO₂e, in grams, for one litre of mixture Values mainly driven by SF6

hydrogen-containing

Gamma Irradiation Facility

H4 beam line in EHN1, CERN NA $oldsymbol{O}$

- Cs-137 gamma source up to 12 TBq $oldsymbol{O}$
- Muon beam 10-450 GeV/c $oldsymbol{O}$
- Gamma flux modulated independently using a $oldsymbol{O}$ system of six attenuation filters (ABS)

Gamma Irradiation Facility Detector setup

	RPC characteristics
ALICE	50x50 cm ² 2 mm single gap 2 mm bakelite electrodes
ATLAS	10x55 cm ² 2 mm single gap 1.8 mm bakelite electrodes
CMS BARI-1p0	70x100 cm ² 1.0 mm single gap 1.43 mm bakelite electrodes
CMS	Trapezoidal (height 10 cm, bases 51cm and 33 cm) 2 mm double gap 2 mm bakelite electrodes
CERN EP-DT	50x50 cm ² 2 mm single gap 2 mm bakelite electrodes
LHCb-SHiP	70x100 cm ² 1.6 mm single gap 1.6 mm bakelite electrodes

Readout

- 2D readout (16+16 strips) 3 cm pitch TDC
- 1D readout (1 strip) 3 cm pitch Digitizer
- 1D readout (32 strip) 0.5 cm pitch TDC
- 1D readout (128 strip) 1 cm pitch TDC
- 1D readout (7 strips) 2.1 cm pitch Digitizer
- 2D readout (32+32 strips) 1 cm pitch TDC

Performance results from TB @GIF++ In absence of background radiation (source OFF)

Performance results from TB @GIF++ In absence of background radiation (source OFF)

Effmax well above 95% decreases for ECO2 and ECO3 (lighter target due to CO2) **Double gap CMS is less sensitive**

Performance results from TB @GIF++ With background radiation (source ON) **Efficiency and current density** Data taken at different ABS:

- - OFF

ALICE-LHCb/Ship (6 m far from source)

 ABS 10 (510 uSievert/hour; 70* Hz/cm² @knee) ABS 2.2 (2070 uSievert/hour; 280* Hz/cm²@knee) Data taken at different ABS:

- CMS-EPDT (3m far from source)
 - OFF
 - ABS 69 (700 uSievert/hour; 80* Hz/cm² @knee)
 - ABS 22 (1800 uSievert/hour; 200* Hz/cm² @knee)

Performance results from TB @GIF++ With background radiation (source ON)

Larger efficiency drop when using ECO2 and ECO3 mixtures

Performance results from TB @GIF++ knee With background radiation (source ON) log(1/(0.95 - 1))**Efficiency, Working Point and cluster size** + HV50 + 120VWP =

achievable efficiency

CMS BARI-1p0

0.7

0.8 0.9

Ageing studies @GIF++ Irradiation campaign with ECO2

Irradiation for all the week $oldsymbol{O}$

- ABS 2.2 (ALICE and LHCb: 2000 uSievert/h 280 Hz/cm2 @knee)
- ABS 2.2 (CMS and EPDT: 13000 uSievert/h 1600 Hz/cm2 @knee)
- **Control weekly HVscan** in absence of background radiation (source OFF) $oldsymbol{O}$
- 50 250 mC/cm2 integrated charge according to the RPC $oldsymbol{O}$

Ageing studies @GIF++ Current monitoring

80

Nominal dark current and Ohmic component ALICE-2-0

Integrated charge [mC/cm²]

0.003

0.002

0.001

density

ъ

Currel

Total dark current increasing with the integrated charge for all chambers

Nominal dark current and Ohmic component SHiP-1-6

- **Resistivity** normalised to $\mathbf{T} = \mathbf{20} \circ \mathbf{C}$ $\rho(T) = \rho(T_0) * 4.4^{\frac{T_0 - T}{12 \circ C}}$
- Increasing trend for 2mm chambers (ALICE, ATLAS, CERN EP-DT) while quite constant for 1.6mm (LHCb/ SHiP)

Conclusions and beyond

- $oldsymbol{O}$ **GWP** \rightarrow huge commitment to find a performant **eco-friendly replacement by RPC ECOgas@GIF++ collaboration.**
- The Test Beam periods show ECO2 (HFO 35% + CO2 60% + iC4H10 4% + SF6 1%) as igodol**promising mixture** for RPCs with gap thickness in the range 1.6 - 2.0 mm, not like that for 1.0 mm.
- The ageing studies show a slight increase of dark current and resistivity (only 2mm gaps) \rightarrow igodolongoing investigation
- A new Test Beam period is scheduled to crosscheck the performances before and after irradiation igodol(Ongoing in GIF++ @ CERN)
- Studies for a **future replacement of the SF6** (GWP = 22800) is foreseen

Resistive Plate Chamber detectors in HEP are operated **F-gases based mixture** with **very high**